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ALGORITHMS FOR CONSTRAINED MOLECULAR DYNAMICS

ERIC BARTH*, KRZYSZTOF KUCZERA , BENEDICT LEIMKUHLER! AND
ROBERT D. SKEEL?

Abstract. In molecular dynamics simulations, the fastest components of the potential field im-
pose severe restrictions on the stability and hence the speed of computational methods. One possibility
for treating this problem is to replace the fastest components with algebraic length constraints. In this
paper, the resulting systems of mixed differential and algebraic equations are studied. Commonly used
discretization schemes for constrained Hamiltonian systems are discussed. The form of the nonlinear
equations is examined in detail and used to give convergence results for the traditional nonlinear solu-
tion technique SHAKE iteration and for a modification based on Successive OverRelazation (SOR).
A simple adaptive algorithm for finding the optimal relaxation parameter is presented. Alternative
direct methods using sparse matrix techniques are discussed. Numerical results are given for the new
techniques, implemented in the molecular modeling software package CHARMM, showing as much
as twofold improvement over SHAKE iteration.
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1. Introduction. In molecular dynamics, the length of timestep for numerically
integrating the equations of motion is dictated by the contributions to the force vector
which maintain pairs of atoms near some equilibrium distance. The imposition of
algebraic constraints that fix these lengths removes the associated rapid vibrational
modes, enabling the use of longer timesteps without substantially altering important
physical characteristics of the motion [1]. Although we treat only length constraints
in the present work, constrained techniques are also of interest for conformational
search and conformational free energy simulations [2]. In [3] the SHAKE iteration was
described for solving the nonlinear equations at each timestep of a constrained version
of the Verlet discretization, and a similar scheme was proposed in [4] for use with the
RATTLE discretization.

We describe in §2 the equations of motion for the molecule with algebraic con-
straints and discuss these two discretizations. In §3 we examine the form of the
nonlinear equations and discuss the existence of solutions. We describe the SHAKE
iteration in a matrix formulation, and show its equivalence to the nonlinear Gauss-
Seidel-Newton iteration [5]. This leads to a convergence result and theoretical rate of
convergence for the SHAKE iteration as well as a more general scheme based on Suc-
cessive OverRelazation (SOR). Experiments with molecules of interest show that SOR
improves the performance of SHAKE iteration by a factor of two or more for certain
choices of relaxation parameter, at no additional cost. We present an algorithm for
effective choice of SOR relaxation parameter w. It has often been suggested (e.g., [6])
that the SHAKE iteration is an efficient alternative to matrix methods for numerical
solution of the nonlinear equations encountered in molecular dynamics, but little dis-
cussion of these methods is found in the literature. In §4 we present several matrix
methods for the nonlinear systems which utilize sparse direct matrix techniques. We
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present numerical results which show that, in some instances, the matrix techniques
proposed here perform faster than iterative schemes like SHAKE iteration and SOR.
85 contains the results of numerical experiments comparing the performance of the
various methods on several molecules of interest. In appendices, we describe the im-
plementation of the proposed methods in the molecular dynamics software package
CHARMM [7] and compare the trajectories generated by the constraint techniques.

2. Background. The Newtonian equations of motion for a system of N particles
interacting in potential field V' = V(¢) are a Hamiltonian system:

(1) Mi=—-V,V(q).

Here ¢ € R3V is the vector of cartesian particle positions, and M is a 3N-dimensional
positive diagonal mass matrix of the form

M = diag(my, my, my, mg, mg, my, ..., my, my, my).

Particle systems of the form (1) arise frequently in physics, chemistry and biology. An
important application is to model dynamics at the molecular level. For this applica-
tion, the potential field might be written [8]

N-1 N
(2) Vig)=Vi(a)+ Va(e) + Vala) + D D vijllai — g50),

i=1 j=i4+1

where ¢; and ¢; in R? denote the position vectors of the ith and jth atoms, ¢ represents
terms due to nonbonded interactions and |-| denotes Euclidean distance in R®. V;(q)is
the component of the potential due to deformations of chemical bonds between certain
atom pairs. A bond « between atoms ¢ and j is usually described by a harmonic term
of the form

(3)

where L, is the equilibrium length of the bond, and K, is the force constant of the

bond. Terms Vjy and Vj for angles and dihedrals (torsions) are also present. It is well

known that the force constants associated with the bond terms are substantially larger

than those for angles or dihedrals [9]. Although we seek to simulate the long term

conformational changes of a molecule, not the rapid vibrations of the bonds, the fast

bond components necessitate very short timesteps in the numerical integration.
Following [10] we impose algebraic constraint equations

K,

5 (lgi — aj1 — La)?,

1
ga(a) = (10 = 4j* = L) = 0

that freeze the bond lengths, thereby removing the associated rapid vibrational modes.
Thus we are concerned with efficient numerical discretization of the equations of mo-
tion (1) subject to m holonomic (position) constraints:

(4) Mi = —V,V(g)—g'(q)'>
(5) 0 = g(q)
Here ¢ : R3N — R™, ¢’ is the matrix of partial derivatives with respect to position

¢, and A € R™ is a vector of time-dependent Lagrange multipliers. These equations
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form a system of differential-algebraic equations (DAEs) of index three: three differ-
entiations of (5) with respect to time are required reduce the equations to a system of
ordinary differential equations [11]. The solution manifold underlying (4)—(5) is

M ={(q,p)lg(¢9)=0,¢'(¢)M~'p = 0}.

The hidden constraint g'(¢)M ~1p = 0 is obtained through time differentiation of the
position constraint.

A computational approach for unconstrained problems that remains the basis for
modern molecular dynamics simulation is a discretization that is often referred to as
the Verlet method [12] when applied in molecular dynamics. When rewritten as a
one-step discretization incorporating half-steps in the momenta,

qnt1 = qn Tt hM—1Pn+1/2
P12 = Pn—(h/2)ViV(qn)
Dn+1 = pn—}—l/? - (h/Q)VqV(qTH‘l)

it is called the leap-frog method.! Due toits evident simplicity and efficiency, Verlet /leap-
frog continues to be popular in molecular dynamics and is the most commonly used
option for dynamical simulations in the important molecular dynamics software pack-
age CHARMM [7]. It is known that the method is symplectic i.e., conserves the
wedge product dq A dp of differentials [14]. The property of being symplectic dupli-
cates a corresponding property for the true flow map of a Hamiltonian system, and
may explain the good performance of the method for long time interval simulations
[15]. In particular, the property of being symplectic implies the Liouville property of
conservation of volume in phase space.

The Verlet method was adapted to allow for bond constraints by Ryckaert et al
[3], and the resulting discretization scheme is referred to as the Verlet method with
SHAKE-type constraints, or simply SHAKE.? An alternative velocity-level formula-
tion for the constrained case, RATTLE, was proposed by Andersen [4]. For n = 0,

one can infer from (7) and (9) that

P12 = po— (h/2)V4V(q0) — (h/2)g'(q0)" Xo-

At each step of a discretization like RATTLE or SHAKE, a system of nonlinear
algebraic equations must be solved. Assuming that the nonlinear equations are solved
exactly at each step, SHAKE and RATTLE are globally second order accurate. The
two methods are equivalent at timesteps in position and at half steps in momenta and,
moreover, the RATTLE method is a symplectic discretization. SHAKE is essentially
symplectic [16] in that the wedge product is preserved, but the computed solution does
not preserve the hidden constraint g'(¢)M ~'p = 0. Symplectic discretization schemes

! The velocity-level leap-frog formulation enjoys improved stability compared to the position-level
scheme, see [13]. Other formulations of the underlying Verlet method include velocity leap-frog and
velocity Verlet.

2 To avoid possible ambignity, we will refer to the iterative solution technique as SHAKE iteration
to distinguish it from the constrained Verlet discretization SHAKE.
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(6) qnt1 = qn + hM—1Pn+1/2
SHAKE (7) Pnt1/2 = Pn-1/2 — hV4V(qn) — hgl(Qn)t/\n
(8) 0 = 9(gnt1)
(9) P = (Pny1/2 + Pro1/2)/2
(10) 1 = dn+hM 'poiiys
(11) Puyijz = Pac1j2 — hVV(4n) — hg'(4:)"Mn
RATTLE (12) 0 = 9(gns1)
(13) o = (Pug1/2+ Puc1y2)/2 = (1/2)9'(¢0) pin
(14) 0 = ¢'(¢2)M "pn

for ordinary differential equations are discussed in [17], and symplectic methods for
constrained problems are discussed in [18]. The SHAKE and RATTLE discretizations
have been generalized to families of higher-order schemes by Jay [19] using multistage
partitioned Runge-Kutta methods and by Reich [20] through concatenation of steps
with appropriately chosen stepsizes (following the ideas of Yoshida [21]). Regardless
of which discretization is used, it is necessary to solve the nonlinear equations at each
step accurately in order to retain the desirable theoretical properties.

3. Length constraints and nonlinear equations.

3.1. Existence of solutions to the discrete equations. Substituting (7) into
(6) leads to the equations

dn+1 = (4n + hM_l(pn—1/2 - thV(QTL) - hgl(QTL)t)\n)
0 g(Qn+1)'

Denoting @ = ¢n41 , G = ¢'(¢s) , and A = k%), | we can write the nonlinear system

as
(15) 9(Q - M7'G'A) =0,

where

(16) Q= gn+hM™ (pusije —hV,V(22))

represents the result of an unconstrained step of size h.
The behavior of numerical methods depends on nonsingularity of the derivative
matrix

(17) R(A) = 0ag(Q— M'G'A)
(18) = ¢(Q—-M'G'NMTIG
The structure of this matrix is discussed in §3.2.

Equation (15) might easily have multiple solutions for A or none at all. When
solutions exist, they are not unique. For m length constraints we can expect perhaps
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2™ solutions. For the example of a pair of atoms with unit mass joined by a length
constraint, several possibilities are shown in Fig. 1a,b,c. The positions of the atoms at
the previous integration step and after the unconstrained step are shown, with dashed
lines for the latter. From (15) we see that a solution @ is obtained by moving the
coordinates of @ in the directions given by G?, the gradient of the constraints evaluated
at the previous integration step. The magnitudes of the moves are proportional to
the entries of A. For a single length constraint, these gradient directions are simply
the positive and negative vector between the particles. Hence the atoms are moved
in opposite directions with equal magnitude. Fig. la shows a situation in which no
solution exists, while the matrix R(0) is nonsingular. If the unconstrained step takes
the atoms outside this cylinder of solutions, a smaller timestep A must be used.

ST
// E ,—;ﬂ:l
/ Ol Tt
® @ E e — 9
s ‘ 5
s =V
v
a. no solution b. solutionsexist, R(0) singular
”Vﬁ\ /\/_\J
. ~ ;S e N AN
.—. . \_\’ . /\7_’_.
N s
<)
c. solutionsexist, g rank deficient d. redundant constraints, G rank deficient

Fi1ag. 1. Exmistence of solutions for simple length constraint models.

Solutions may exist when:

1. ¢'(Q)M~'G!is singular, even though both ¢/(Q) and G have full rank. In Fig. 1b
the bonds from the previous and unconstrained steps are perpendicular.

2. ¢'(Q)is rank deficient. In Fig. 1c the two atoms have the same position after the
unconstrained step.

3. (G is rank deficient. Fig. 1d illustrates this case with a closed loop of four atoms
and four length constraints of equal length. At the previous timestep, the
positions of two atoms are identical, leading to dependent constraints. In
practice, occurrences of dependent constraints might be ‘stepped over’ by
the numerical integrator, but many iterations of the nonlinear solver may
be required, and the gradient directions are ill conditioned. This situation
can be remedied only by a reformulation of the problem to avoid dependent
constraints. It can be shown that G always has full rank when the constraints
form no closed loops.

It is perhaps typical that there are 2™ solutions. In order to specify the physically
correct solution we could use some continuation process [22, 23] on ¢, as @ varies
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from 0 to 1. We choose
(19) Ingo = @n + Oh(P — RM~1GIA),

where P = M~ (p,_1/2—hV,V(qn)), G = ¢'(¢n), and A = X,,. Continuation uniquely
defines A = A(#) unless bifurcation occurs for 0 < 8 < 1. It is sufficient, it can be
shown, that Org(gn4e) be of full rank for 0 < 6 < 1.

3.2. Form of the nonlinear equations. To study the structure of the matrix
R in (18), we first consider a related symmetric matrix

R(q) =g ()M 'g'(q),

in which the two occurrences of the constraint gradient are evaluated at the same q.
This is analogous to the well known B-matrices from the molecular vibration theory of
Wilson [24] for the case of bond length internal coordinates. Evidently, the matrix R(q)
is positive definite when the constraints are not dependent. The entries of this matrix
are also nearly constant along solutions for the macromolecular modeling problem.
This can be seen using techniques from [24]. As an alternative, we first decompose the
matrix using the stamps of VLSI circuit simulation [25]. Consider length constraints
of the form

|QZ - QT|2 = L%

We will view stamps as N x N block matrices, with 3 x 3 blocks. With this convention,
for fixed indices [ and 7, 1 <[, r < N, the associated stamp matrix .S has the following
nonzero elements: sy = s,, = I3} s, = s,) = —I3 where I3 denotes the 3 x 3 identity
matrix. Although the directionality is unimportant, we refer to the two indices of a
stamp as the left and right. For each bond k, we have a corresponding stamp Sj.

A constraint of length L; can be written

1
§(qt5kq —L{)=0
and the matrix of partial derivatives is given by

qt51

t
q'S2

9=\ .
q' S,

R(q) can also be decomposed using stamps:

qtslM_lSlq qtslM_ISQQ cldots qtslM_lqu
¢'SaM~1S1q ¢'SoM~1Syq cldots ¢'SaM™'S,.q

'S M™'S1q ¢'SpM™'Seq . 'S MT'Snq

Here we have used the symmetry of the stamps. We denote the left and right indices
associated with stamp k by I(k) and r(k), respectively. The individual elements of the
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matrix can be evaluated as follows. On the diagonal, we have

1 1
tS M—IS — —q, i —q, 4+ . _ i . _
q' Sk kq ml(k)(‘Il(k) 4r (k) (Qik) — G () - (2rk) — Qr) (Tr (k) — Qir))

= [t ) g — a0
= e e k) — (k)| -

The off-diagonal elements are nonzero only when the corresponding pair of edges shares

a common vertex. For example, if 7(i) = {(j), then we have

1
'SM~'S;q = ) — 4 (@G) — 4
q iq ml(j)(qz() 4r@) (0) — 40 ())

= g — g llag) — gl <030
i) @) = Lr(@NLIG) — 9 () i

where 0;; represents the angle between the vectors ¢q;;) — ¢,(;) and ¢,(;) — qy(;) - Hence

the entries of R depend upon the distance between pairs of atoms involved in length
constraints and the angles 6;; between these constraints.

If we have correctly solved the length constraints, we know that |‘Il(k) — qr(k)| =Ly
and is constant throughout the integration. (We require, of course, that the constraints
be satisfied by the initial conditions. In a practical implementation, this should be
checked and corrected if needed.) Let R= {pi;}. If q satisfies the constraints, then

1 1
prk = L} ( + ) ,
Mgy My(k)

while for j # i, if edges ¢ and j share vertex «, then

1
pi; = m—LZ-L]- cos 0;;

where 0;; is the angle between edges ¢ and j measured at vertex a. For the molecular
dynamics problem the potential will contain, in addition to terms like (3), correspond-
ing angle terms which inhibit variation in the 6;; from their reference values H%. Hence,

variation in the entries of R is likewise inhibited.

The structure of the nonzero off-diagonal elements can be stated graph theoreti-
cally. Tt is natural to consider the graph structure of a molecule by taking the atoms
as nodes and chemical bonds (or in our case length constraints) as edges. Nodes of
the graph are adjacent exactly when the corresponding atoms are a bonded pair. The
adjacency structure of a graph is commonly represented by an adjacency matriz, which
has nonzero entries corresponding to adjacent pairs of nodes. The dual concept is to
consider pairs of edges in the graph to be adjacent if they share a common node. The
adjacency matrix for this dual graph describes the nonzero structure of £ . We use
these ideas in §3.3 in regard to the convergence of the SHAKE iteration, and again in
§4.1 where we consider sparse matrix techniques.

Having examined the structure of the symmetric matrix R, we now must consider

R = g/M—th

with G, as before, evaluated at the coordinates of the previous timestep, and g’ eval-
uated at the unconstrained step @ plus some correction. The nonzero structure is
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unchanged (i.e., R is structurally symmetric). By the methods above it can be seen

that
Rn‘ILLi( Ly )COS@,

M@y M)

while for j # i, if edges ¢ and j share vertex «, then

1 . .
R;; = —0L;Ljcost;;.

My

Here L; is the current length of the bond, ¢; is the angle (with appropriate sign)

formed by the current and previous bond 7, and #;; is the angle between bond 7 at the
previous step and the current bond j. It can be seen from (16) that

Q =qn+ O(h):
and hence

i/k = L+ O(h)
cos;; = cosl; + O(h)

with the result that R is an @(h) perturbation of the symmetric matrix R. Note
finally that for a solution @Q* of the nonlinear system, L; = L;.

The form of the nonlinear system can be shown to yield important matrix prop-
erties for many examples in macromolecular modeling. Assuming 6;; > 5 Vi, j, we
have

(20) Ri>0 Vi, R; <0 0#7.

Molecular structure considerations imply that the interbond angles ¢;; often satisfy

this condition, as in bovine pancreatic trypsin inhibitor BPTI [1]. The three-constraint
T
5
can be shown that for sufficiently small A, the matrix R is strictly diagonally dominant:

(21) Zleﬂ < |Rii| Vi
i

water molecule is a notable exception, with angles much less than In that case it

For the Cgg molecule, both conditions are met. These properties will be used below
in the convergence analysis of iterative solvers for the nonlinear equations.

3.3. The SHAKE iteration for the nonlinear equations. The system of
nonlinear equations from §3.2 can be written in terms of the individual unknowns as

m
(22) 0=g(Q—- M NG,
=1
where A‘ is the ith component of A, and Gt = V,9:(¢n). In the SHAKE iteration the
individual constraint equations are linearized and solved sequentially:
(23) QF = QLi— MTIGIAAT

(24) 0 = gi(Qf—l)+gz{( f—l)(Qi‘c— f—1)~
8



Here the constraints are indexed by 7 and the sweeps through the list of constraints
by k. Notice that equations (23)—(24) reduce to the scalar equation

gi( k—1)
25 AAF = L .
(25) "gl(QE MG

Following a successful iteration of K sweeps, we will have

m K
Qn =Q—-M 'Y GEY T AAL
=1 k=1

and |g2(QZI‘)| < ¢ for a specified tolerance e. > The process of modifying the uncon-
strained step to obey the constraints is known as coordinate resetting.

We discuss the convergence of the SHAKE iteration by showing that it fits into
the framework of Ortega and Rheinboldt [5]. Define

fi(A) = g:(Q — M~'G'A).

We want A so that f;(A) = 0 for i = 1,...,m. The nonlinear Gauss-Seidel iteration
consists of solving

F(AE AR AR AR AT = 0.

at each iterate for A¥ . Each of the scalar nonlinear equations might be solved using
j iterations of Newton’s method, which is the so called j-step Gauss-Seidel-Newton
(GSN) method.

If we apply I-step GSN to the equation (22), we obtain

g:(Q — M~'G'AFY)

AF = AR -
T 09l Q - MG
or
Ak — A]_c—l _ gz(Q - M_thAf_l)
@ MG MG
or

gi(QE MG

which is precisely SHAKE iteration (25).
It is shown in [5] that this iteration converges locally to a solution Q* when the
linear Gauss-Seidel iteration applied to

(26) R=g(Q MG’

converges, with the same convergence rate. In particular, it can be shown [26] that
linear Gauss-Seidel converges when applied to a matrix with property (21) as for three-
constraint water molecules and Cgg. Convergence is also assured for M -matrices, an

% Note: this does not insure that lgi( f,‘l)| < €, 1 # m. In principle, we should pass once more
through the constraints, merely checking that this condition holds. This check is not typically
performed.



important subclass of matrices with property (20). An M-matrix R is characterized
by property (20) and the existence of a positive scalar « such that R = ol — F where
all entries of E are nonnegative and o > p(F), the spectral radius of . We have
numerically determined the matrix R associated with BPTI (and by continuity, also
the matrix R for small enough k) to be an M-matrix with « equal to the largest
diagonal entry R;;.

3.4. Nonlinear SOR iteration. In the SHAKE iteration, an initial approxi-
mation is gradually corrected until the solution is obtained. By exaggerating each
individual correction by some factor w

fi(Af—ﬂ

k k—1
A TG
we can usually hasten convergence. This is successive overrelazation (SOR). One
wishes to find an w which is optimal for rapid convergence of the iteration.

As with the nonlinear Gauss-Seidel-Newton iteration, it is shown in [5] that SOR-
Newton converges locally to a solution Q* with the same convergence rate as linear
SOR iteration applied to R(Q*). With judicious choice of w, we loose none of the ro-
bustness of SHAKE, and stand to gain considerably in terms of computational work.
Fig. 2 gives results of a series of short MATLAB [27] simulations of a simplified “buck-
minsterfullerene” [28] using starting coordinates from the MATLAB demonstration
routine bucky.m, angle force constants normalized to one, and with a stringent con-
vergence criteria (€ &~ 10712). Tt is seen that values of w can be found which improve
the performance of SHAKE iteration (w = 1) dramatically. While this example with
its rich connectivity structure is not representative in molecular dynamics, we choose
it to challenge the various techniques considered here.

100 T T T T

90t
80t
70t

60 .'..

Iterations

50}
40},

30}

20 : : : :
0 20 40 60 80 100
Time Steps

F1G. 2. Iteration counts for SHAKE (w = 1), and several other w values.

3.5. An adaptive algorithm for the SOR parameter. Conditions on the co-
efficient matrix have been found [26, 29] which make possible the a priori computation
of the optimal relaxation factor & . However, the matrices from the present molecular
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dynamics application almost never satisfy these conditions [30]. In this case, since we
repeatedly solve nonlinear systems whose form does not change from step to step, we
can use the behavior of the iteration during the early stages of the integration to find
a good value of the relaxation parameter via iterative improvement:

Adaptive Relaxation Algorithm

initialize:
wp:=1
Yo:=10
A = AO

for k =1,2,... (timesteps)
integrate and perform SHAKE/SOR iteration with relaxation parameter wy
compute number of iterations v (see item 3 below)
if v, > 4;_1 then

A — A
Ai=—5
end if
Wipt == wp £ A
end for .

Practical Considerations:

1. Withwy = 1, we should choose Ay > 0. In our current implementation, Ag = 0.1.
2. Beginning with wg = 1 the relaxation parameter is increased by A = Ay at each
timestep until convergence speed of SHAKE/SOR iteration, as measured by
convergence factor 4%, no longer improves. i.e., further change of w in the
current search direction will not increase speed of convergence. Assigning

A= —% refines and reverses the direction of the search.
3. The convergence factor v could also be taken as the average of the ratios
k k—
IAAS[]/[JAAR].

4. The algorithm continues to modify A until w+ A is numerically indistinguishable
from w. A possible improvement would include a mechanism by which A grows
automatically if convergence becomes slow for the “converged” value w.

The behavior of the algorithm for the “buckminsterfullerene” example is illustrated
by Fig. 3.

4. Newton-like iterations. A more general family of methods based on itera-
tively improving the multipliers A can be described by the general form

AO =0
Qr = Q—M_thAk, k>1
A1 = A+ Reg(Qr), k>0

where, for k > 1, we propose the choices

I. Ri = (¢(Qe)M~'G")™". This is the conventional Newton-Raphson iteration
(NIP).

II. R=(GM™'GY) ~'. This is what we might call Symmetric Newton iteration.
Here the symmetric matrix R is constant throughout the iteration. Further
motivation for this method comes from the observation in §3.2 that R is
nearly constant over the course of the numerical integration, and hence rarely
requires update and refactorization. We distinguish between symmetric new-
ton iteration (SYMM), in which Ris updated at each timestep, and adaptive

11
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F1G. 3. Performance of the adaptive relazation algorithm with v = ||[AAF||/||AA*Y|.

symmetric newton iteration (SNIP), in which the matrix Ris updated only

when convergence becomes slow. In both SNIP and SYMM, we require that

the constraints be satisfied in order to construct the initial matrix R. For

initial conditions which fail to satisfy the constraints, we use an alternative

method (NIP or SHAKE) for one timestep, then proceed with SNIP/SYMM.
These methods can be shown to be convergent by standard theory for full rank G
and small enough h. It is important to emphasize that we solve the same system
of nonlinear equations as in SHAKE, with the same convergence criteria as SHAKE.
Further, these methods are equally robust as SHAKE. We present these alternative
numerical methods in an attempt to achieve a more efficient implementation of (6)—
(9)-

4.1. Sparse matrix techniques. In the system of linear of equations Az = b,
the coeflicient matrix A is said to be sparse if it has relatively few nonzero entries.
The task of a sparse linear solver is to order the equations so that the process of
matrix factorization produces additional nonzeros (called fill-in) in a way which can
be conveniently handled with regard to additional computer storage overhead and
computational work. For sparse matrices, the structure of the nonzero elements and
the fill-in produced by factorization can often be neatly characterized in terms of the
adjacency structure of an associated graph. We have already seen that the structure
of a molecule can naturally be represented by a graph and that the structure of the
dual graph determines the structure of the nonlinear equations which must be solved
in order to satisfy the constraints at each timestep.

For method I above, we utilize the nonsymmetric sparse solver MA28 [31]. In
this code, the nonzero structure is entered and manipulated in the so called general
sparse format. Three vectors are required to represent this structure: an integer vector
of IRN row indices, an integer vector JCN of column indices and a real vector VAL
containing the matrix entries. The rows and columns of A are reordered according to
the Markowitz criterion [32]. Let r; and ¢; give the number of nonzeros in row ¢ and
column j respectively. At each stage of Gaussian elimination, a new pivot entry a;; is

12



to be chosen which

1. is not too small numerically

2. minimizes (r; — 1)(¢; — 1).

The Markowitz criterion produces a pivot entry which approximately minimizes the
fill-in at each step of Gaussian elimination. For the MD application, this ordering need
be chosen only once, since the structure of the problem remains unchanged throughout
the integration. For our problem, this ordering scheme has several weaknesses: it does
not exploit structural stability and it compromises the quest for minimal fill-in by
pivotting for numerical stability, which we suspect is not an issue here.

For method II we use the symmetric SPARSPAK code [33]. The nonzeros are
stored in an compressed sparse data structure. The adjacency structure is contained
in the integer array NADJ and ADJNCY , where NADJ(i) contains the number of
bonds adjacent to bond ¢ and ADJNCY(1:NADJ(1)) contains the indices of the bonds
adjacent to bond 1, ADJNCY(NADJ(1)+1:NADJ(2)) contains the indices of the bonds
adjacent to bond 2, etc. This information is used to order the equations according
to the minimum degree scheme [32] which is the symmetric version of Markowitz
ordering. In the symmetric positive definite case ordering can proceed without regard
to numerical values of the entries. After reordering, the adjacency information is used
to construct the compressed data structure: an integer vector XLNZ contains pointers
to the first entry in each row, a real vector DIAG contains the diagonal entries. and a
real vector LNZ contains all entries of the original matrix and space required for fill-in.
Of particular importance for molecular dynamics applications, these ordering schemes
produce no fill-in when applied to molecules with tree structure [33], such as BPTI
in the absence of disulfide bonds. The reduction in fill-in gained from these schemes
is exemplified by Figs. 4 and 5. Fig. 4 shows the sparsity structure of the matrix
R for the Cgg molecule with all 90 bonds constrained, before and after factorization
with the equations ordered without regard to fill-in. For this natural ordering of the
bond constraints, the factorization produces considerable growth in the number of
nonzero entries. Fig. 5 shows the sparsity structure for the matrix before and after
factorization, with the bond constraints reordered by the minimum degree scheme.

450 nonzero entries 2332 nonzero entries

Fi1G. 4. Original ordering and fill-in , Ceso.
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5. Numerical experiments. The performance of the nonlinear equation solvers
discussed above is illustrated by a series of short molecular dynamics runs for three
systems: (i) a box of water molecules, (ii) bovine pancreatic trypsin inhibitor (BPTI,
a small protein), and (iii) “buckminsterfullerene”, a model of the Cgy molecule with
all bonds assumed equivalent. Systems (i) and (ii) are typical for molecular dynamics
simulations in chemistry and biology [34, 8], while Cgp and other fullerenes are cur-
rently attracting significant interest in materials science [35, 36, 37] and biology [38].
It is important to test the different constraint methods on such realistic examples.

The simulation results are presented below. In all cases, the nonbonded inter-
actions were calculated using point charges and van der Waals parameters from the
CHARMM Version 22 parameter set. A 12 A nonbonded cutoff distance was em-
ployed, with a switching function between 10 and 12 A for van der Waals terms and a
shift function at 12 A for electrostatics, in order to eliminate discontinuities due to the
cutoff [7]. All simulations were performed using the program CHARMM Version 22,
modified to enable alternative distance constraint schemes as described in Appendix

A.

5.1. Box of water molecules. A truncated cubic cell [39] of size 28.01 A con-
taining 367 water molecules was simulated with periodic boundary (N,V,E) conditions
[39], using the TIP3P three—center model of Jorgensen [40]. The internal motions of
each molecule were eliminated by introducing three constraints — two for the O—H
bonds and one for the H---H distance, resulting in 1101 constraints altogether. An
alternative algorithm for this model (SETTLE) was described in [41].

Starting from a structure previously equilibrated at 300 K with SHAKE con-
straints, a 10 ps simulation was performed with timestep of 0.002 ps using the various
length constraint methods.

Results of the experiments are summarized in Table I. SHAKE tolerance 107
was used. (The nonlinear solver iterates until constraint error, in norm, is less than
SHAKE tolerance.) Time spent preprocessing sparse data structures is given in the
rows labeled “setup”. The rows labeled “reset” give the total time spent solving the
nonlinear equations throughout the simulation. The number of iterations for each
method is given in the rows marked “its”. The CPU time reported by CHARMM for
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the entire simulation is given by “total”. For SOR, the final relaxation parameter w
from the adaptive relaxation algorithm is given. For this example about 7% of the
total computer time was spent on the SHAKE iteration, which is a small but non-
negligible fraction. Thus, for solvated systems, exploring more efficient alternatives to
the SHAKE algorithm could lead to some savings in computer time. SOR required
less than 3% of the total time. We have seen that the entries of the matrix R vary
with the angles between constraints. In this case, these angles are fixed, leading to
identical iteration counts between SYMM, where R is updated at each integration
step, and SNIP, where no updates are required. The SHAKE iteration can be seen to
perform slowly compared to all other methods; SOR and SNIP/SYMM provide more
than twofold speedup.

SHAKE | SOR SNTP NIP
setup 0.08s. | 0.07s. | 6.95s. | 6.58s.

reset 41.8m. | 174 m. | 16.1 m. | 33.4 m.
total 10.5h. | 10.1h. | 10.1 h | 10.3 h.

its 21.7 9.91 5.0 2.0
omega 1.00 1.24
TABLE 1

Comparison of SHAKE, SOR, SNIP, and NIP for three-constraint water molecule.

5.2. BPTI. BPTIis a small protein of 58 amino acid residues. Simulations were
performed on an all-hydrogen model consisting of 898 atoms in vacuum, using the
CHARMM Version 22 all-hydrogen protein parameter set. The starting structure
was taken from the Brookhaven Protein Data Bank [42, 43] from the file pdb4pti.ent
[44]. After the positions of hydrogen atoms were generated [45], the coordinates were
energy-minimized with 500 steps of the Adopted Basis Newton-Raphson method [7],
subject to isotropic harmonic constraints on heavy atoms [46]. The unconstrained
system was then heated from 0 to 300 K by 20 K increments during 5 ps (5000 steps
of 1 fs), and equilibrated at 300 K for a further 5 ps. The final coordinates from this
procedure, together with a random sample of velocities from a Maxwell-Boltzmann
distribution at 300 K, were used to start a series of 500 fs simulations with various
timesteps and constraint methods. Lengths of all 918 bonds were constrained. Fig. 6
shows the sparsity structure of the matrix R to be tightly banded. The outlying entries
correspond to the three disulfide bonds in BPTT [47].

A detailed analysis of the different BPTT trajectories is given in Appendix B. The
results indicate that all the constraint methods used here yield essentially the same
trajectories, and that the deviations between trajectories are determined primarily by
the value of the constraint tolerance parameter. Additionally, relations between total
energy fluctuations and timestep were determined, which are useful for choosing the
value of the timestep giving a desired accuracy of energy conservation.

Table IT gives results for dynamics runs with timesteps of A = 0.0005, 0.001, 0.002,
0.004 picoseconds, using SHAKE tolerance 1076. Rows labeled “setup” refer to the
preprocessing time for the sparse matrix data structures. The total time spent solving
the nonlinear equations (coordinate resetting) in the course of the simulation is given
in the rows labeled “reset”. The total CPU time reported by CHARMM is given by
“total”. The average number of iterations required per timestep is given in the rows

15



2939 nonzero entries

FiG. 6. Sparsity structure for BPTI with disulfide bonds.

labeled “its”. For the SOR schemes, the final relaxation parameter w is given. The
column labeled “SOR4” gives results of the SOR iteration with adaptive relaxation
algorithm and initial approximate solutions obtained from the Lagrange multipliers
from the previous step. The success of this strategy depends on the timestep size,
with diminished performance for larger steps. When improvements are realized, the
time savings are mitigated due to the extra computation required to accumulate the
Lagrange multipliers during the SOR iteration for use at the next integration step.
Due to the nearly tree-like structure of BPTI, very little fill-in is introduced. This
results in fast matrix factorization. Consequently SYMM, in which the number of
iterations is kept low by refactorization at every timestep, performs well — slightly
faster than SNIP where matrix updates were not performed. NIP gives the results
for the Newton-Raphson iteration. Notice that half the number of iterations of SNIP
are required in the latter case, yet more time was spent in coordinate resetting by
a factor of between 2 and 3. The fraction of computation time spent on coordinate
resetting with the SHAKE iteration was substantial for this system — approximately
17 percent.

5.3. “Buckminsterfullerene”. We also simulated “buckminsterfullerene”, a sim-
plified model of the Cgg molecule in which all bonds have been assumed equivalent.
The potential energy parameters were chosen to be intermediate between those for
aliphatic and aromatic carbons in the CHARMM Version 22 all-hydrogen protein pa-
rameter set. In all of the 90 bond energy terms of form %kb(b — bg)?, we used kj =
560.0 keal/(mol-A?) and by = 1.44 A . Tn all of the 180 angle energy terms of form
Tko(6—09)?%, we used kg = 140.0 kcal/(mol-rad?) and 6y = 120.0°. The van der Waals
interatomic interactions were described by a Lennard-Jones function of distance R:
€ [(RO/R)12 -2 (RO/R)G] with Rp=3.9848 A and ¢ = 0.07 kcal/mol. Starting from
a set of points on a unit sphere generated by the algorithm bucky.m from the nu-
meric and visualization software package MATLAB [27], the coordinates were energy
minimized using 1000 steps of the steepest descent algorithm, followed by a phase
of heating to 300 K and equilibration. The final coordinates from this procedure,
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timestep SHAKE SOR SOR+ SNIP | SYMM NIP
its 19.0 9.25 7.89 3.58 2.03 1.01
reset 4.62m. | 225 m. | 2.18m. | 2.53 m. | 2.52 m. | 4.36 m.
0.0005 total 30,6m. | 282m. | 28.1m. | 28.7m. | 28.5 m. | 30.4 m.
setup 0.07 s. 0.07 s. 0.05 s. 6.39 s. 6.28 s. 6.07 s.

omega | 1.00 1.17 1.01
its 21.02 10.4 7.80 4.95 3.01 2.10

reset 2.8 m. 1.3dm. | 1.19m. | 1.70 m. | 1.53 m. | 4.25 m.
0.001 total 16.3m. | 14.8m. | 14.6 m. | 15.3 m. | 15.1m. | 17.8 m.
setup 0.07 s. 0.07 s. 0.07 s. 6.38 s. 6.13 s. 5.98 s.

omega | 1.00 L19 1.26
its 929.1 . 7;5 3?25 6.20 33(3)3 2.02
reset, 1.59 m. m m 1.05 m. m 2.13 m.
0.002 total 86m. | ™ : ATm. | ™ 50 m.
sth g 3? IS“ 8.02m. | 7.97 m. 2 g; ;“ 8.34 m. 2 ?(7) ;“
Omega Coo |007s [ 005s | TR esss | P00
536 24 L1 TR 573
its ' . 118 : : 2.96
Teset, 2'1872 2;463 0.50 m. 2;636 2;560 1.56 m.
0.004 total : : 80m. | : 78 m.
szt: 4.98 m. | 3.76 m. 3 gg M 489 m. | 4.75 m. g ;2 m
Omepa 0.055. | 007s. | ") S 16405 |6.22s. |70
82 | 100 114 :
TABLE 11

Comparison of SHAKE,SOR,SNIP,SYMM, and NIP for BPTI , tol=10"°.

together with a random sample of velocities from a Maxwell-Boltzmann distribution
at 300 K, were used to start a series of 0.5 ps simulations with different timesteps
and constraint methods. 90 length constraints were imposed. Fig. 4 shows the spar-
sity structure of the matrix R. The adjacency structure in the bonds can be seen to
broaden the bandwidth, compared to the matrix for BPTIL.

Table III gives results for 5 fs dynamics runs with timesteps of A = 0.0005, 0.001,
0.002, 0.004 picoseconds, using SHAKE tolerance 1076, Increased connectivity in this
example leads to increased fill-in during matrix factorization and hence more costly
matrix factorizations. For this reason SNIP, which avoids repeated factorizations,
performs faster than SYMM at each choice of timestep. For larger timesteps, SNIP
gives the fastest coordinate resetting among all methods considered here. For the
largest timestep, SOR gives no improvement over SHAKE iteration. In this example,
nearly half of the total computation time was spent on coordinate resetting with the
SHAKE iteration. It would thus be advantageous to use sparse matrix methods to
implement bond constraints in systems with complicated bonding topologies.

6. Conclusion. In this paper we have studied systems of nonlinear equations
which arise at each step of a popular discretization scheme in constrained molecular
dynamics. When solutions of these equations exist they are not unique, but the de-
sired solution can be defined uniquely by analytical continuation. We have pointed
out that SHAKE iteration, the standard solver for such equations, is equivalent to a
nonlinear Gauss-Seidel iteration and hence convergent for suffliciently small timesteps.
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timestep SHAKE | SOR SNIP | SYMM NIP
its 10.3 8.78 2.00 2.00 1.00
reset 13.1s. | 11.7s. | 12.9s. | 27.2s. | 51.9s.
0.0005 total 384s. | 37.22s. | 38.6s. | 52.6s. | 1.29 m.
setup 0.00s. |0.00s. | 0.08s. | 0.125s. | 0.60 s.

omega 1.00 1.17
its 14.1 13.3 2.97 2.01 1.01

reset 10.3 s. 9.2 s. 9.07 s. 14.4 s. 26.0 s.
0.001 total 248 s. 23.3 s. 23.5 s. 28.7s. | 40.7 s.
setup 0.00 s. 0.00 s. 0.15 s. 0.10 s. 0.58 s.

omega 1.00 1.05
its 18.3 17.1 3.10 2.24 2.00

reset 7.90 s. 718 s. | 4.67s. | 7.35s. | 24.7 s.
0.002 total 16.3 s. 16.1s. | 13.45s. | 15.9s. | 33.7s.
setup 0.00 s. 0.00s. | 0.12s. | 0.12s. | 0.60 s.

omega 1.00 1.05
its 23.0 23.4 4.06 3.04 2.04

reset 4.68 s. 5.53s. | 3.15s. | 4.27s. | 13.4s.
0.004 total 10.6 s. 11.1s. | 9.07s. | 10.8s. | 19.5s.
setup 0.00 s. 0.00s. | 0.12s. | 0.10s. | 0.60 s.
omega 1.00 .98

TABLE III
Comparison of SHAKE,SOR,SNIP,SYMM and NIP for Ceo, tol = 1075,

In constrained molecular dynamics simulations, substantial computer time is spent
on the SHAKE iteration. Further, SHAKE and other iterative methods are not par-
ticularly amenable to vector or parallel treatments. Hence we were lead to explore
more efficient alternatives to this method. Successive overrelaxation is a natural im-
provement of Gauss-Seidel which exaggerates the correction at each iteration by some
relaxation factor. We presented an adaptive relaxation algorithm which iteratively
determines the optimal relaxation factor over the course of the integration. Experi-
ments have shown SOR with the adaptive algorithm can offer up to twofold speed-up
over to SHAKE iteration and compares favorably to all methods considered here.

Several matrix methods for the nonlinear equations were discussed: Newton itera-
tion implemented with sparse matrix techniques and symmetric approximate Newton
methods (SYMM and SNIP) formulated to avoid matrix updates and refactorizations
by exploiting the special structure of the nonlinear equations. The symmetric Newton
methods were found to be much faster than the SHAKE iteration in all cases, and
were in some instances the fastest among all methods.
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viding us with the unpublished CHARMM version 22 parameter set, and Ralph Byers
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550 workstation at the Departments of Chemistry and Biochemistry, University of
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A. Appendix: Modifications to CHARMM. The modifications to the non-
linear equations solver described in this paper have been implemented in CHARMM.
These methods can be selected on the SHAKE command line:

SHAKE iteration

SOR iteration

Newton iteration

Adaptive Symmetric Newton iteration
Symmetric Newton Iteration

SHAKE BOND

SHAKE SOR BOND
SHAKE NIP BOND
SHAKE SNIP BOND
SHAKE SYMM BOND

For SOR, only slight modification to the code is involved. Several global variables
are added to the common block SHAKE.fcm . Parameter 01dNITER contains the iter-
ation count from the previous timestep for comparison with the present value NITER.
OMEGA and DOMEGA contain the current relaxation parameter and the next change to
be made to OMEGA in convergence speed continues to improve. Updates of OMEGA occur
in the last few lines of the subroutine SHAKEA.

A number of new arrays are required for the implementation of the sparse matrix
methods. Memory is allocated from the HEAP using the ALLHP command in the sub-
routine SHKSET. We list the variable names and size for each method in Tables IV and
V. The parameter NCONST gives the number of constraints to be imposed.

NIP storage overhead.

Array Name Array Size | Type
IVECT 10*NCONST | integ4
JVECT 10*NCONST | integ4
IKEEP 5*NCONST | integ4
Iw 8*NCONST | integ4
W NCONST | real8
RHS NCONST | real8
VEC2 NCONST | real8
IRN 5*NCONST | integ4
JCN 5*NCONST | integ4
A 5*NCONST | real8
TABLE IV

The symmetric SPARSPAK code requires roughly half the storage of its nonsym-
metric counterpart. The array containing the values of the matrix entries for the
symmetric code has length MAXLNZ+1, where the parameter MAXLNZ is computed dur-
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Array Name Array Size | Type
IVECT 10*NCONST | integ4
JVECT 10*NCONST | integ4
IKEEP 5*NCONST | integ4
IW 8*NCONST | integ4
W NCONST | real8
RHS NCONST | real8
VEC2 NCONST | real8
IRN 5*NCONST | integ4
JCN 5*NCONST | integ4
A 5*NCONST | real8
TABLE V

SYMM/SNIP storage overhead.

ing the symbolic factorization routine SMBFCT. MAXLNZ is typically 5 to 8 times larger
than NCONST.

In the nonsymmetric code, the length of IRN, JCN, and A is chosen somewhat
arbitrarily. These arrays must of course be sufficiently large to contain all nonzero
entries after fill-in, but extra length enables the code to run more efficiently by reducing
the need for memory swapping [31].

When one of the matrix methods is selected by the SHAKE command, the bond
list SHKAPR to used to determine the adjacency structure of the dual graph. This is
accomplished by a call to the routine bondaj in the nonsymmetric case, and the pair
of routines fnxadj and fnadje in the symmetric case.

In addition to factoring and solving systems of linear equations, the sparse codes
also must evaluate the constraint equations, update the coefficient matrix R of (26)
and reset the coordinates as in (22). The constraint equations are evaluated at each
iteration by the subroutine g.f in a straightforward way. The coefficient matrix is
updated when necessary by the routines mdij.f and asymij.f for the symmetric and
nonsymmetric cases respectively. The bond adjacency structure discussed above is
used so that R can be evaluated without the need to form the matrices ¢/, M, or G*
explicitly. Coordinate resetting

Qnew = qold + GtAA

is accomplished at each iteration by the routine ggaxpy.£f which also makes use of the
bond structure to avoid the explicit formation of G*.

B. Appendix: Comparison of constrained trajectories for BPTI. For
the case of BPTI we have performed detailed comparisons of MD trajectories gener-
ated by the different constraint algorithms. In our comparisons we used the following
quantities: root-mean-square (rms) deviations between final coordinates from the tra-
jectories, average total energy and total energy rms fluctuations, average temperature
and temperature rms fluctuations. For two molecular structures a and b, the rms
deviation is defined as:

1/2
(27) RMSD,, = (WZ[(F;-)@ - (Fi)b]2) :



where N is the number of atoms and (7;), and (7;), are the positions of atom ¢ in
structures a and b, respectively. This quantity informs us about the average difference
between two sets of atomic coordinates of a molecular system; the RMSD is zero for
identical structures. The total energy is a fundamental quantity in molecular simula-
tions; it is conserved along the exact solution to the equations of motion. Differences
in average values of total energy indicate that trajectories explore different regions
of phase space, while the magnitudes of the total energy fluctuations inform about
the deviation between the numerical and exact solutions to Newton’s equations. The
temperature in a molecular dynamics simulation is defined as

1 N
(28) T = — E m;v?,
fk =

where m; and v; are the mass and velocity of atom i, respectively, & is the Boltzmann
constant and f is the number of degrees of freedom. For an N-atomic molecule in
vacuum, for which we remove the translational motion of the center of mass and the
angular momentum relative to the center of mass, and on which m constraints have
been imposed, f = 3N — m — 6. Trajectories in which atoms move with different
velocities will exhibit different values of average temperatures and temperature fluc-
tuations. Temperature fluctuations in constant energy simulations are related to heat
capacities [48].

To obtain a better understanding of the constraint algorithms we compare results
of a series of 0.512 ps simulations starting from coordinates and velocities prepared
as described in the § 5 under the following conditions: (i) unconstrained simulations
with timesteps h = 0.5, 1 and 2 fs, (ii) simulations with only heavy atom-hydrogen
bonds (X—H, X=C,N,0,S) constrained with A~ = 0.5, 1, 2 and 4 fs and constraint
tolerance of 1071, denoted below by X—H, and (iii) simulations with all 918 bonds
of BPTI (including the three disulfide bonds) constrained with A = 0.5, 1, 2 and 4 fs,
with a constraint tolerance of 1071, denoted by ALL. Stable trajectories could not
be generated for unconstrained simulations with A > 4 fs and constrained ones with
h > 8 fs.

Differences in the trajectories can arise from two sources — simulation condi-
tions and algorithm performance. We expect deviations between the unconstrained
and constrained trajectories, since they correspond to different effective Hamiltonians
and different numbers of degrees of freedom. Additionally, trajectories started from
the same coordinates and velocities with different timesteps will differ. Thus, in or-
der to examine the dependence of trajectories on the algorithm we have to compare
simulations using the different constraint schemes and the same integration timestep.

The average temperatures and temperature fluctuations in the fully constrained
simulations (ALL) were 303.8 + 6.6 K, 303.1 + 6.5 K, 300.1 &+ 6.4 K and 288.3 +
6.9 K, for timesteps A = 0.5, 1, 2, and 4 fs respectively. In the X—H simulations the
corresponding values were 301.1 & 6.2 K, 300.1 &+ 6.1 K, 296.5 &+ 6.2 K and 282.4 +
6.1 K, for timesteps A = 0.5, 1, 2, and 4 fs respectively while in the unconstrained
simulations values of 303.2 & 5.3 K, 300.8 & 5.6 K, and 291.8 & 5.6 K, for timesteps h
= 0.5, 1, and 2 fs respectively. For all the tested bond constraint algorithms (SHAKE,
SOR, NIP, SNIP and SYMM) at a given value of h, the average temperatures and
temperature fluctuations were the same within a relative error of 10=* for ALL; for
X—H all the available digits were identical, giving ~ 1076 as the upper limit of the dif-
ferences. The higher values of temperature fluctuations in the constrained simulations
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agree with the expected trend that lowering the number of degrees of freedom will de-
crease heat capacities and increase kinetic energy fluctuations [48]. The temperature
fluctuations found here correspond to kinetic energy fluctuations of ~ 10 kcal/mol in
the unconstrained and 11-12 kcal/mol in the constrained simulations. The ratio of
fluctuations of the total to the kinetic energy is usually used as a criterion of numeri-
cal stability/accuracy of MD simulations. These ratios were about 0.002 (0.004), 0.01
(0.02), 0.04 (0.07) and 0.2 (0.3) in the constrained ALL (X—H) simulations with h
= 0.5, 1, 2, and 4 fs, respectively, and were 0.01, 0.06 and 0.4 in the unconstrained
simulations with A = 0.5, 1, and 2 fs, respectively.

The average total energies and total energy fluctuations in the constrained ALL
simulations were -170.92 + 0.03, -170.81 £ 0.11, -170.04 £ 0.44 and -159.09 + 2.66
kcal/mol, for timesteps h = 0.5, 1, 2, and 4 fs, respectively. In the X—H simulations
the corresponding results were -41.64 & 0.04, -41.54 &+ 0.18, -40.53 £ 0.75 and -22.01
+ 3.79 kcal/mol, for timesteps h = 0.5, 1, 2, and 4 fs, respectively. For all the tested
bond constraint algorithms (SHAKE, SOR, NIP, SNIP and SYMM) and at a given
value of h, the average total energies and total energy fluctuations were the same
within a relative error of 10~* in the ALL simulations; in X—H all the available
digits were identical, giving about 107 as the upper limit of the differences. For
comparison, the corresponding values for the unconstrained simulations were 105.27 +
0.13, 106.19 & 0.64, and 120.19 + 3.93, for timesteps h = 0.5, 1, and 4 fs, respectively.
Successively eliminating the high frequency bond motions thus leads to improved
energy conservation for a given timestep h. Fig. 7 shows the dependence of total
energy fluctuations on time step in the constrained and unconstrained simulations. In
all cases the dependence of energy fluctuations on h is approximately quadratic for
small values of h.
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FiG. 7. Total energy fluctuations in 512 fs simulations of BPTI.

To further compare the performance of the different bond constraint algorithms,
we have calculated the rms deviations between several classes of final structures from
the 0.512 ps simulations. Comparison of the final coordinates from the constrained
simulation using SHAKE with those of the other constrained algorithms (SOR, NIP,
SNIP and SYMM), for a given integration timestep, yields RMSD values in the range
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of 107-107% A in the ALL and 107°-107'° A in the X—H simulations, for all of
the timesteps h = 0.5, 1, 2, and 4 fs employed. The corresponding trajectories are
thus quite similar. Furthermore, the deviations between the trajectories appear to
be determined primarily by the value of the constraint tolerance parameter, which
was 107¢ for ALL and 1079 for X—H. Fig. 8 shows the time evolution of the
coordinate rms deviations between corresponding structures from simulations with
all bonds constrained using SHAKE and SOR algorithms with all bonds constrained.
Comparisons of other pair;o of const‘raint mgthods yield qualitatively similar results.
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Fic. 8. RMS deviations between SHAKE and SOR trajectory frames.

RMS deviations between the final coordinates from the constrained and corre-
sponding (i.e., with same h) unconstrained trajectories are about 0.3 A . For each of
the constrained methods, rms deviations between the final coordinates from simula-
tions with A = 0.5 fs and those with the longer timesteps were 0.02 (0.11), 0.08 (0.09)
and 0.12 (0.13) A ,in ALL (X—H) for h = 1, 2, and 4 fs, respectively.

In conclusion, analysis of the BPTT trajectories shows that all the considered bond
constraint algorithms lead to practically identical trajectories, as measured by coor-
dinate rms deviations, total energy and kinetic energy averages and fluctuations. The
deviation between trajectories generated using different methods appear to be pri-
marily determined by the value of the constraint tolerance parameter. Our numerical
results confirm that adding bond constraints decreases total energy fluctuations (i.e.,
improves energy conservation) for a given timestep and increases temperature/kinetic
energy fluctuations. Also, the ratios of total to kinetic energy fluctuations given here
may be used to tailor timestep values to a given level of accuracy in both unconstrained
and constrained simulations.

The longer term behavior of the different constraint algorithms can be analyzed
on the example of the water box trajectories (Section 5.1). The trajectories consisted
of 5000 steps of molecular dynamics using the Verlet algorithm and a 2 fs time step; all
were started from the same structure equilibrated using SHAKE constraints and the
same set of atomic velocities. The average total energies and their fluctuations were
—3100.941.0, —3101.440.6, —3102.040.5 and —3100.941.47 kecal /mol for the SHAKE,
SOR, SNIP and NIP algorithms, respectively, all with a constraint tolerance of 1076.
The corresponding average temperatures were 307.8 £ 7.6 , 306.7 £ 7.6, 306.9 & 7.8
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and 307.0 & 7.7. The basic descriptors of the different trajectories agree within their
fluctuations; we can thus conclude that the four methods lead to essentially the same
trajectories on the 10 ps time scale. It is encouraging that SOR and SNIP showed
about a factor of two improved total energy conservation over SHAKE. To determine
with certainty whether this is a general feature of the methods or a special case,
further numerical experiments are needed. The ratios of fluctuations of total to kinetic
energy were 0.06, 0.03, 0.03 and .10 for the SHAKE, SOR, SNIP and NIP algorithms,
respectively. The values for SHAKE, SOR and SNIP are quite similar to the ratio
of 0.04 found in all tested methods for 0.512 ps trajectories of BPTI with all bonds
constrained and h = 2 fs.
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