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INTRODUCTION 

The current practice of molecular dynamics simulation dates back to the 1960’s 

and the pioneering work on smooth potential models for monatomic fluids of 

Rahman1 and Verlet2. In the 1970s, interest developed in applying molecular 

dynamics methods to more complicated molecular fluids such as water3, 

molecular fluids with internal degrees of freedom4 and large flexible molecules5.  

Given a potential energy function V  (about which we have much more to say 

below) that models the interatomic forces in a molecular system with N atoms, 

the Newtonian equations of motion can then be expressed as  

 ( ) ( )V= := −∇ ,
r

Mr F r r��  [1] 

where M  is a diagonal mass matrix with diagonal  

 1 1 1 2 2 2[ ]
N N N

m m m m m m …m m m ,  

and 
i

m  the mass of the i th particle. The gradient V∇
r

 is the column vector of all 

partial derivatives with respect to particle positions. It is easily verified that the 

total energy  

 ( )
2

T

E V= +
Mrr

r
��  

is constant along solutions of eq. [1]: 0dE dt/ = . The system is simulated from 

initial positions and velocities 0 0( )t =r r , 00( )t =r r� �  often chosen randomly in 

accordance with some appropriate statistical ensemble.  

Computer simulation of the system modeled by [1] requires some sort of time 

discretization scheme. The method proposed by Verlet propagated positions by  

 1 1 2 12n n n n

i i i i
h

+ − −= − + + ,r r r M F  [2] 
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and velocities using  

 1 1 2n n n

i i i
h+ − 

 
 

= − / .v r r  [3] 

Here the superscripts denote the indices of time steps, each of which is of size 

h , so  

 0( )n

i i
t nh≈ + ,r r  

and ( )
i

n n

i V= −∇rF r  is a Cartesian vector which gives the sum of forces acting on 

particle i  due to interaction with other particles, evaluated at the point nr .  

In his ground-breaking paper, Verlet noted the remarkable energy preservation 

properties of the integrator, reporting “…small irregularities in the total 

energy…but the error is of no consequence.” The discretization method in eqs. 

[2–3], commonly known as the “Verlet Integrator”, is accurate to second order in 

time, requires only one force evaluation per step, and is obviously time-

reversible, which is part of the reason for its excellent stability in terms of near-

conservation of energy. In fact it is now known that it is a more general symmetry 

preservation — the symplectic property6 — of the Verlet method, viewed as an 

appropriate mapping of positions and momenta, that confers its excellent long-

term energy stability7-9.  For a thorough review of symplectic numerical methods, 

see the monograph of Sanz-Serna and Calvo10. The Verlet method is now 

regarded as the gold standard for time stepping schemes in molecular dynamics. 

In conformity with modern practice, and to anticipate the algorithmic development 

of multiple time step methods in the coming sections, we rewrite the Verlet 

method equivalently in the “velocity Verlet” form. The inside of the integration 

loop is given by  
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 1 2 1

2

n n n

i i i

h+ / −= + ,v v M F  

 1 1 2n n n

i i i
h

+ + /= + ,r r v  [4] 

 
1 1 2 1 1

2

n n n

i i i

h+ + / − += + .v v M F  

In contrast to the constant energy regime described above, it is sometimes 

desirable to perform simulations at a fixed temperature. This can be 

accomplished by the Langevin dynamics model11:  

 ( ) ( ) ( )t V tγ= , , := −∇ − + ,
r

Mr F r v r v R��  [5] 

where 0γ >  is a friction coefficient and ( )tR  is a vector of normally distributed 

random variables with zero mean and covariance ( ) ( ) 2 ( )T

B
R t R t k T t tγ δ′ ′= −M , 

where 
B

k  is Boltzmann’s constant, T  is the simulation temperature and δ  is the 

Dirac delta function. A natural extension of discretization [4] gives the following 

time discretization scheme12:  

 1 2 1 1 2( )
2

n n n n

i i i n

h
t

+ / − + /= + , , ,v v M F r v  

 1 1 2n n n

i i i
h

+ + /= + ,r r v  [6] 

 1 1 2 1 1 1 2

1( )
2

n n n n

i i i n

h
t

+ + / − + + /

+= + , , .v v M F r v  

The molecular dynamics potential 

The interactions of polyatomic molecules are modeled by pair potentials, both 

Lennard-Jones and electrostatic, between all constituent atoms. Also, the model 

potential must maintain intramolecular geometries by including the “bonded” 
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terms: bond lengths, bond angles, and dihedral angles. The result is the 

molecular modeling potential function which generally is of the form:  

 ( ) b a d i LJ CV V V V V V V= + + + + + ,r  [7] 

where b
V , a

V , d
V  and i

V  are sums over various pairs, triples and quadruples of 

spatially localized bonded groups of atoms representing bonds, angles, dihedral 

angles, and improper dihedral angles, respectively:  

 
bonds angles dihed

etcb b a a b d

ij ijk ijkl
V V V V V V= , = , = , .∑ ∑ ∑  

Similarly LJ
V  is the sum of Lennard-Jones contributions for all pairs of atoms, 

and C
V  is the sum of the Coulombic potential over all charge-charge interaction 

pairs.  

 
allpairs allpairs

LJ LJ C C

ij ij
V V V V= , = .∑ ∑  

The functional forms of these terms vary widely. Representative examples can 

be found in work by a number of authors13-17. A simple, detailed model is 

presented in the MD Test Set project18.  

The MD potential is highly nonlinear, with many local minima. Minimization of the 

potential energy is a common task, but the nonpolynomial proliferation of local 

minima frustrates attempts to determine lowest energy states for modeled 

systems19. Also, the finite-time dynamics of a nonlinear multiple-minima system 

can become trapped in one potential energy well, which impedes conformational 

sampling. The terms in the potential represent interactions on a wide range of 

spatial scales (from bonds of length 1 Å=10 10−  m, to Coulombic interactions 

which extend throughout the modeled system) and time scales (the fastest bonds 
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have a period of 10 fs=10 14−  s, while large scale conformational interconversions 

may occur on the scale of seconds). Time stepping algorithms such as the Verlet 

method [4] require a time step which is sufficiently short (0.5–1.0 fs) to resolve 

the fastest bonded motion, meaning that a computed trajectory which spans a 

time interval of one nanosecond (10 9−  s) requires one million dynamics steps. As 

with the earliest molecular dynamics simulations, the great majority of the 

computational work is expended in computing the forces of interaction—for N  

particles the computational effort is 2( )O N . For simulations in which the only long-

range force comes from the rapidly-decaying Lennard-Jones potential, this 

difficulty can be remedied by imposing distance cutoffs: the potential is 

approximated by zero for all atomic separations greater than a certain cutoff 

value 
c

r . In biomolecular simulations, the electrostatic 21 r/  forces are non-

negligible even at large separations, making distance cutoffs unphysical and 

undesirable.  

Thus, the MD potential function has several characteristics which have an impact 

on the performance of numerical methods: multiple minima, wide range of time 

and space scales, and long-range interactions between many particles.  

For traditional molecular dynamics simulation using [4], the most important 

limiting aspect of the potential energy function involves the numerical stability of 

the integrator. While the computational resources required for a given numerical 

simulation could be lessened by increasing the length of each time step, stability 

of the time-stepping algorithm is limited by the molecular high-frequency 

vibrational modes, such as bond stretching. The fastest period relevant to 
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biomolecules is around 10 fs (associated with O–H and N–H stretching, for 

example). Resolving these fast motions adequately dictates time steps of length 

1 fs or less. Of course the slower and more computationally expensive force 

components are updated at each step, resulting in undesirable CPU limitation of 

simulation length and system size. Intense activity is ongoing on the problems of 

efficient time stepping and fast evaluation of non-bonded forces without distance 

cutoffs.  

Multiple time steps 

In multiple time step (MTS) time discretization methods the short range forces, 

which can change rapidly in time, are updated frequently and included in the 

numerical dynamics with small time steps. The long range forces are treated with 

larger steps in time, appropriate to the timescale on which they vary significantly. 

We will discuss later the fundamental impact the high-frequency force 

components have on MTS methods as well.  In this chapter we trace the 

development of MTS methods and present a tutorial to show an elementary 

application of these techniques. 

Reaction paths 

A very different set of methodologies try to compute trajectories between two 

states of a molecular system. These “double-ended” algorithms, usually called 

reaction path approaches, are different from integrators of the Newton equations 

of motion [4] that only need the initial positions and velocities of the particles in 

the system. The boundary points can represent a reactant and product 

configuration or a transition or intermediate state and reactant (product) 
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configuration. The calculated path provides a qualitative description of the 

structural changes as function of a parameter(s) (reaction coordinate(s)) that 

characterizes the reaction path. The path then represents a series of replicas of 

the molecular system ( ){ } ( ) ( ) ( ){ }NsXsXsXs ,,, 21 �=X  parameterized according to 

a certain parameter s. In this notation, X  represents the coordinates of the 

molecule in a given slice of the path.  

Most of the reaction path approaches make use of a spatial step, and therefore 

are not affected by the time scale limitation of MD methods. However, for 

complex systems the ruggedness of the potential energy surface limits the 

applicability and accuracy of these paths because the number of conformations 

in the trajectory needs to increase.  Another fundamental limitation is that these 

methods are not applicable to study molecular events for which very few details 

are known about the conformations of products or key intermediates. It is for 

those processes where theoretical approaches are more helpful. 

In MD trajectories it is easy to extract dynamical properties by computing an 

average over time. The extraction of these properties is more difficult to do in 

reaction path approaches because trajectories are computed in configuration 

space. Dynamical information can be computed if an ensemble of many reactive 

trajectories is obtained. Determination of such an ensemble is not done in 

general (this can be done with transition path sampling). However, reaction paths 

methods are very useful in determination of rates and free energy profiles for fast 

but rare events that are very inefficient to probe using MD algorithms. This is the 

case because trajectories obtained with reaction path approaches filter out the 



 9 

waiting periods the system spends in the reactant wells, unlike the MD 

trajectories.   

The reaction path methods, comprising a number of different theoretical 

formulations and algorithms, are difficult to describe by a common framework. 

The second part of this chapter reviews some of the path techniques developed 

in the past 10 years. All of these techniques describe the system with atomic 

detail and use a potential function of the form of Eq. [7]. Then, we will describe 

with more detail one of these methods based on a discretized formulation of the 

action of classical mechanics. In this action formalism (called SDEL) reaction 

paths are obtained linking two conformations of the system. These paths, 

parameterized according to arc length, can be obtained with a large length step. 

Therefore, this algorithm tries to solve the time scale limitation of normal MD 

simulations by using a boundary value formulation of the classical equations of 

motion. This method has been used to compute approximate paths for processes 

that are impossible to study using normal MD simulations. However, it is difficult 

to compute dynamical properties from these paths (for example, the time of the 

trajectory computed directly from the algorithm is underestimated by several 

orders of magnitude!). Still, the method can be used to determine large 

conformational changes that can be resolved by the trajectory. This chapter 

provides a tutorial section about how to run a program associated with this 

algorithm and review some recent applications and improvements.  
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MULTIPLE TIME STEP METHODS 

In an effort to lengthen the feasible simulation timescale of molecular simulations, 

Streett, Tildesley and Saville introduced the multiple time step method to the MD 

literature in 197820. These authors recognized that the components of the force 

which vary most rapidly, and hence require small time steps for numerical 

resolution, are typically associated with pair interactions at small separations. 

This is important because each of the N  particles in the simulation has a small 

separation distance with only a few, say k N<< , particles. Success of the 

multiple time step methodology depends on computing these 2
kN N<<  

interactions at each step, i.e. at intervals of h  in the numerical schemes given 

above, while computing the remaining ( )N N k−  pair interactions

i (associated with forces that vary more slowly) at longer time intervals hτ . 

Before we discuss implementation details, it is desirable to state the general 

issues of multiple time step numerical methods. The central objectives are: (1) to 

devise a splitting of the systematic forces into a hierarchy of force classes based 

on the time interval over which they vary significantly, and (2) to incorporate 

these force classes into a numerical method in a way that both realizes 

enhanced computational efficiency and maintains stability and accuracy of the 

computed solution.  

                                                 
i
In fact, the original authors presented the MTS method in the context of a distance 

truncated Lennard-Jones potential, so that the total number of computed interactions was 

somewhat less that 2
N . For biological MD applications there is evidence that cutoffs can 

cause undesirable artifacts
21, 22
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Splitting the force 

Streett and coauthors proposed a splitting of forces based on a distance 

parameter splitr . In the potential energy formalism we write  

 
split split

( )V
| − |< | − |≥

= +∑ ∑
i j i j

ij ij

r r r r r r

r V V  [8] 

 fast slow( ) ( )= + ,V r V r  [9] 

with  

 
fast fast slow slow( ) ( ) ( ) ( )V V:= −∇ := −∇ .

r r
F r r F r r  

As a practical matter, particles will move in and out of the splitr  sphere for a given 

particle over the course of a simulation. To avoid discontinuities which result from 

a particle suddenly changing classification from the slow to the fast force 

component, the force can be decomposed into fast and slow components using a 

switching function ( )S r ,  

 fast slow ( ) (1 ( ))i i i S r V S r V= + = − ∇ − − ∇ ,
i ir rF F F  [10] 

where  

 
split

2

split split

split

1

( ) 1 (2 3)

0

r r

S r R R r r r

r r

λ

λ

 , < −


= + − , − ≤ ≤
 , <

 [11] 

with split( ( ))R r r λ λ= − − / . Here λ  is a “healing length” over which the switching 

function S  smoothly varies between one and zero. The form of the switching 

function is somewhat arbitrary, though sufficient smoothness is required.  

In treating the full MD potential model, the forces due to bonded interaction 

potentials b
V , a

V , d
V  and i

V  are included in the fast component along with the 
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fastest non-bonded forces. It is not uncommon for the two-scale splitting 

described here to be generalized in a direct way to a hierarchy of more than two 

classes. We should mention that efficiency gains cannot typically be realized 

from the simplest splitting of all: bonded forces comprising one class and non-

bonded forces the other. The reason is that atomic collisions cause the short-

range non-bonded forces to vary over roughly the same (short) timescale as the 

bonded forces. The details of force splitting can be rather complicated and 

system-dependent. Later in this work, we will address this important issue 

influencing efficient implementation of force-splitting in MTS methods.  

Numerical integration with force splitting: Extrapolation vs. Impulse 

The general plan for a multiple time step numerical method is that fast

i
F  will be 

evaluated at every step of the integration at time increments h , while slow

i
F  will be 

evaluated less frequently, typically at time increments hτ  where 1τ >  is an 

integer. The key question is: how will slow

i
F  be incorporated in the numerical 

dynamics? In the original work of Streett et al, the slow force on particle i  was 

approximated by a truncated Taylor series at each step j , 0 j τ< < , between 

updates at steps 
n

t  and 
n

t hτ+ :  

 slow slowslow slow 21
( ) ( ) ( ) ( ) ( )

2
i ii n i n n n

t jh t jh t jh t+ = + + + .F F F F� �� �  

Formulas for the required time derivatives up to second order are given by Steet 

et al20.  
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A natural simplification is to truncate the Taylor series after the constant term, 

resulting in a constant extrapolation of the slow force. The velocity Verlet method 

[4] can be easily modified to implement this constant extrapolation multiple time 

step method:  

 1 2 1 fast slow( )
2

n n

i i i i

h+ / −= + + ,v v M F F  

 1 1 2n n n

i i i
h

+ + /= + ,r r v  

 fastupdate
i

F  [12] 

 slowif ( 1)mod 0 update
i

n τ+ = , F  

 1 1 2 1 fast slow( )
2

n n

i i i i

h+ + / −= + + .v v M F F  

Note that the important feature is that the fast forces are computed each step, 

while the slow forces are computed τ  times less frequently, with updates given 

by:  

 fast fast 1 slow slow 1( ) ( )n n

i i i i i i

+ += = .F F r F F r  

However, the multiple time stepping puzzle is not so easily solved as this. The 

simplicity of this modification hides a potentially disastrous flaw! We recall that 

the Verlet method is popularly employed in virtually every molecular dynamics 

simulation done today because its geometric symmetry ensures that the total 

energy along computed solutions does not drift but remains essentially constant, 

respecting the underlying Newtonian physics of the model. By modifying the 

force updates in the multiple time step method given above, we have disrupted 

the symmetry of the original method. The result is that the energy will drift 
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significantly and systematically. The situation is improved, but not solved, by 

using higher-order Taylor approximation for the slow forces and a higher-order 

integration scheme. Street et al used third order Taylor approximation of the slow 

forces and a high order Gear predictor-corrector integration method. In this way, 

the energy drift can be made small relative to the time step, so that relatively long 

simulations can be computed with less apparent problems from energy growth.  

A new era in multiple time step methods arrived in the early 1990s when 

Grubmüller et al23 and Tuckerman et al24 independently published multiple time 

step methods that appeared to overcome the energy instability of extrapolation 

methods. The idea is to mimic the “kick-drift” nature of the velocity Verlet method 

itself. It is seen in [4] that the force supplies a “kick”, or impulse, in the first line, 

then the system “drifts” as the updated half-step velocity contributes to the 

position at the new step. The velocity Verlet method can be modified so that the 

slow force is also applied as an impulse:  

 1 1 slow ( )
2

n n

i i i i

hτ −= + ,v v M F r  

 1 n

i i
=r r  

 for 1j τ= : ,  

 1 2 1 fast ( )
2

j j j

i i i i

h+ / −= + ,v v M F r  

 1 1 2j j j

i i i
h

+ + /= + ,r r v  [13] 

 1 1 2 1 fast 1( )
2

j j j

i i i i

h+ + / − += + ,v v M F r  

 end  
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 1n

i i

τ+ =r r  

 1 1 slow 1( )
2

n n

i i i i

hτ τ+ − += + .v v M F r  

The modification amounts to the replacement of the middle step of [4] with an 

inner loop over the τ  steps between slow force updates.  

It can be shown that impulse multiple time step algorithms, such as the one 

shown here, can be formulated so as to preserve time-reversibility. As a result 

these methods can, for suitable choices of time step sizes, avoid systematic 

energy drift along computed trajectories. In the next section we discuss the 

question of feasible time step size. This question is the heart of the matter. In 

order to consume less computational power per unit of simulation time, 

successful multiple time step methods must combine force splitting approaches 

and time stepping algorithms which allow significantly lengthened time steps for 

the most computationally costly force components. This issue has been the focus 

of intense work over the past decade.  

The fundamental limitation on the size of MTS time steps 

Impulse MTS methods began to show considerable success in the mid-nineties, 

with published results reporting computational speed-up by a factor of five 

compared to traditional MD simulation25, 26. Two features emerged with regard to 

the practical time step sizes for MTS methods. The first was consistent with 

results reported by Street et al 20 years earlier: the size of the small time step — 

used to resolve the highest frequency motion in the system — needed to be 

somewhat smaller than the typical MD time step in order to maintain energy 



 16 

stability of the solution. In terms of overall computational efficiency this is of little 

practical concern because the forces being evaluated at each small step are 

assumed to be very inexpensive in CPU time. The second feature was more 

significant: computed solutions demonstrated systematic energy instability 

whenever the larger steps used to resolve slower force components exceeded 

5 fs27. This is important because the possibility of further efficiency gains with 

MTS methods require that the slowest forces be updated much less frequently. 

The 5 fs barrier, which for a time seemed to have put a ceiling on further 

developments, came to be understood as a resonance artifact28-30 coinciding with 

the half-period of bonds such as O-H. The impulses introduced into the dynamics 

at each large step excite the bonds and lead to catastrophic energy growth. This 

energy growth is seen initially in the fastest bonded energy. As a practical matter, 

growth in these energy components can provide an early signal of trouble in an 

MTS simulation.  

One obvious remedy might be to choose time step lengths so as to avoid small 

integer multiples of half-periods of any oscillatory motion. However, it has been 

demonstrated31 that the molecular dynamics potential gives rise to motion with a 

continuum of periods greater than or equal to 10 fs. Furthermore, the energy 

instability of impulse MTS methods becomes exponentially worse at larger 

multiples of the half-periods. This rules out the possibility that a fortuitously 

chosen assortment of impulse MTS time steps longer than 5 fs could yield stable 

computation.  
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A number of methods have been proposed to overcome the MTS time step 

barrier, including averaging methods32 which “mollify” the impulse, allowing time 

steps of up to 6 fs while maintaining the favorably small energy drift attained by 

impulse MTS methods at time steps of 4 fs. We will omit the details of these time-

stepping algorithms, but point to a reference33 which explicitly provides 

implementation details.  

A point of great interest is that extrapolation methods such as the one given 

above in equation [13] suffer from resonance artifacts to a lesser degree than 

impulse methods34. In particular, it has been demonstrated35, 36 by eigenvalue 

analysis of extrapolation MTS methods that the severity of the instability does not 

grow with the largest MTS steps. Similar eigenvalue analysis shows that impulse 

methods suffer from increasingly severe energy instability with increasing MTS 

steps. This suggests that if the relatively mild instability of extrapolation methods 

could be somehow managed, the 5 fs time step barrier could be overcome. In the 

next section we discuss how extrapolation MTS methods, while unsuitable for 

simulations in which energy must be conserved, can achieve the goals of true 

long-time-step methods in the context of Langevin dynamics.  

Langevin stabilization 

The Langevin dynamics model of equation [5] has been employed to meet a 

variety of modeling objectives. As a fixed-temperature method, it provides a way 

to carry out numerical simulations which sample from the canonical ensemble of 

statistical mechanics37. Also, the stochastic forcing function can be viewed as a 

model of intermolecular collisions, making the Langevin model suitable as a 
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surrogate for explicit solvent molecules12. A third way the versatile Langevin 

formalism has been utilized is to provide energy stabilization for simulations 

using numerical methods which may have desirable properties but suffer from 

energetic drift when applied to MD equations of motion38, 39.  

Langevin stabilization as an approach to multiple time step numerical integration 

was introduced by Barth and Schlick35 in 1998. One particularly simple method 

described in that paper can be written easily as a modification of [13] subject to 

[5]:  

 1 2 1 fast slow( )
2

n n

i i i i

h+ / −= + + ,v v M F F  

 1 1 2n n n

i i i
h

+ + /= + ,r r v  

 fastupdate
i

F  [14] 

 slowif ( 1)mod 0 update
i

n τ+ = , F  

 1 1 2 1 fast slow( )
2

n n

i i i i

h+ + / −= + + .v v M F F  

where  

 fast fast slow slow 1 1 2

1( ) ( ( )) ( ) ( ) ( )n n

i i n
t V t t t tγ + + /

+, , := −∇ − + = , , .
r

F r v r v R F F r v  

This method can naturally be extended to include a splitting of more than two 

force classes, and is amenable to other modifications and improvements such as 

moving the slow force update to be more symmetrically placed in the integration 

loop. For a three-class force splitting, it was shown35 that for typical biomolecular 

systems, the MTS time steps (and hence the frequency of updating the slow 

forces) can be extended to 48 fs or more with resulting computational speedups 
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of at least a factor of ten. The success of Langevin stabilization with extrapolation 

MTS methods has led to its use to achieve stable simulations at large time steps 

using mollified impulse methods as well40-42. A systematic comparison43 of these 

methods shows that extrapolation methods hold some advantage among 

Langevin-stabilized MTS integrators in terms of stability at long time steps. On 

the other hand, the argument in favor of mollified impulse methods is that no 

stabilization is required at small time steps.  

Further Challenges and Recent Advances 

The success of Langevin-stabilized methods has yielded, for the first time, the 

opportunity to explore the full promise of MTS methods. As in any field of inquiry, 

solving one problem often clears the way for the emergence of several others, 

and MTS integration is no exception. As an example, the extrapolation method35 

was successfully used with 120 fs slow force update frequency in simulations of 

a DNA/polymerase system44. Remarkably, in this study computational gains were 

limited to a factor of 5, even though the longest-range forces were updated two 

orders of magnitude less frequently than the fastest forces. The explanation is 

likely due to the extreme sensitivity of DNA systems to electrostatic interactions, 

which requires that medium-range forces be treated with very short time steps in 

the range 1–2 fs. This points to a difficulty with the force splitting idea as applied 

to molecular dynamics of biological systems: The time and distance scales do 

not naturally fall into well separated categories which would give rise to easy 

identification of force classes. The result is that the highest frequency motion in a 

slow force class might be only marginally lower than the lowest frequency motion 
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in a fast force class. This feature, more prominent in some systems than others, 

can severely limit the size of time step which can be used for any given force 

class, hence attenuating the hoped-for computational advantage of MTS 

methods.  

During the decade that saw development of long time step MTS methods, work 

proceeded along another path on the fundamental problem of computationally 

costly force evaluations in MD. This research was aimed at the development of 

summation schemes, such as fast multipole45-48 and Ewald summation49-51, for 

faster evaluation of electrostatic energies and forces without distance cutoffs. 

The computational advantage over direct evaluation of long-range electrostatic 

forces is the reduction in the complexity of the task from 2( )O N  to ( ln )O N N . For 

solvated systems, fast summation methods have been successfully integrated 

into the framework of force-splitting in multiple time step integration methods25, 52, 

53. While it is often the case that fast summation methods enjoy computational 

speedups compared to direct evaluation only for sufficiently large systems, it is 

precisely these large systems that would have exhibited the largest 

computational speedup for long time step MTS methods.  

The current situation is then that large time step size allows the slowest forces to 

be evaluated very infrequently over the course of a multiple time step MD 

simulation. At the same time, these forces can be evaluated rather more cheaply 

than was possible several decades agoii. As the long range forces become both 

cheaper to evaluate and this evaluation needs to be done less frequently during 

                                                 
ii
There are some technical limitations to the conjoined use of MTS methods and fast 

summation
32, 54
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a simulation, our attention must go to the new cost leader in MD simulation: the 

medium-range forces. These forces are not especially slow (as in the 

DNA/polymerase simulation44), nor are they particularly amenable to efficient 

approximation by fast summation methods. They can and do require careful 

resolution with rather small time steps. Further efficiency gains will require new 

approaches to the medium-range forces. This issue is open to new research from 

a variety of fields: force-field modeling, force splitting techniques and time-

stepping algorithms.  

An MTS tutorial 

In this section, we present a simple model problem to illustrate impulse and 

extrapolation MTS methods for simulations in the constant energy and constant 

temperature regimes. The models are implemented in MATLAB, with codes 

given at a supplementary web site55.  

The model consists of a pair of water molecules in the plane. The forces of 

interaction come from spring models of oxygen-hydrogen (O-H) bonds, as well as 

H-H springs to maintain the water model geometry. In a more realistic model, the 

angle between the two 0-H bonds would correspond to a more complicated 

potential function, but the three spring model suits our purposes here. The atoms 

of each molecule also interact, via electrostatic forces, with atoms of the other 

molecule. To avoid the complexity of treating the system in a way that takes the 

pressure of the system into account, we fix the two oxygen atoms in place. This 

is accomplished by simply making the model forces to be zero for these two 

atoms.  
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The system is represented graphically in figure 1. In the figure we indicate the 

central dipole vector for each molecule. In analyzing the results of simulations, 

we will monitor the motion of the angles θ  indicated in the figure.  

The model uses natural units: Angstroms, Kilocalories per Mole and Atomic Mass 

Units (AKMA). In this system of units, lengths and masses have obvious values 

(for example a hydrogen atom has approximately unit mass), but the resulting 

time unit is non-standard: 1410888821.4 −× seconds. For this reason, it is seen that 

in our examples, a time conversion is required so that simulation can be 

presented in time units of femtoseconds (fs).  

To begin, we must state explicitly the potential energy function, using parameter 

values derived from the CHARMM potential model14:  
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where the spring constants and equilibrium lengths for H-H and O-H bonds are 

given by  

 450 0 450 0 0 9573 1 5139
HH OH OH HH

k k L L= . = . = . = .  

and the electrostatic constants for hydrogen and oxygen are  

 0 417 0 834
H O

q q= . = − . .  

The total potential energy for the system is obtained by summing the bond
V  terms 

for all six bonds, and elec
V  for the eight electrostatic pairs. Note that because the 
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oxygen atoms are not subjected to any force, we need not compute interactions 

between them, resulting in 3 3 1 8× − =  non-bonded pairs. The forces are then 

computed as the negative gradient of elec
V . The form of the total forces can be 

seen in the MATLAB code twowaters.m. We have implemented the time-stepping 

algorithms [4–14]. Simulations using the various algorithms are coordinated and 

dispatched by the mfile dyntwowat.m.  

High and low frequency motion: The importance of electrostatic forces 

For typical configurations of the model system with the molecules separated by 

about 5 Å, it is seen that the forces due to the bonded interactions have 

magnitude on the order of 110 , while the electrostatic forces have magnitude on 

the order of 310− .  It is natural to wonder about the overall importance of the tiny 

electrostatic forces. We performed long MD simulations using [4] in the presence 

and absence of electrostatic forces in the model. The left view in figure 2 shows 

one position component of one of the molecules over a few dozen time steps — 

enough to capture several periods of the fastest motions due to the bond forces. 

It can be observed that the fastest oscillations have period of approximately 9 fs. 

The right view in figure 2 shows a much longer trajectory of the dipole angle θ . 

The presence of the electrostatic forces can be seen to result in very low 

frequency motions — several orders of magnitude slower than the fast bond-

induced motions. Without electrostatic interaction, the dipole angle remains 

essentially constant, with small fluctuations due to molecular vibration. These 

low-frequency motions are typical of the biologically important motions in realistic 
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biomolecular models. It is common to perform power spectrum analysis of MD 

trajectories in order to identify the constituent motions of the model system. 

Figure 3 shows the power spectrum for the dipole angle. Notice, for example, 

that the highest frequency peak at 0.114 1fs−  corresponds to motion with period 

8.8 fs. Also note that in the left view the slowest motion appears as a frequency 

peak of 0.0001 1fs− , which agrees with the trajectory in figure 2 with apparent 

period of 10000 fs. A MATLAB script for plotting power spectra is given in 

powerspectrum.m.  

Behavior of impulse MTS method on the model system 

The model system was designed to allow the simplest possible force splitting. 

The bonded forces constitute the fast force. The two molecules are constrained 

to be sufficiently distant from one another to avoid any close approaches, so the 

non-bond forces can be taken as the slow force. With this splitting, the impulse 

MTS method [12] was used with step sizes of h = 0.5 fs and various values of τ. 

Figure 4 shows the RMSD energy error for the method versus the interval 

between slow force updates corresponding to integer values of τ between 1 and 

20. It can be seen that the energy error from τ=1 (equivalent to velocity Verlet) to 

τ=8 (corresponding to slow force updates on intervals just shorter than half the 

period of the fastest motion) is remarkably constant. Unstable energy behavior 

begins for τ=9, and is especially notable at the period of the fastest motions. 

Power spectrum analysis shows that the low frequency motion is correctly 

resolved by the impulse MTS method for values of τ in the stable regime. 



 25 

Behavior of Langevin-stabilized extrapolation method on the model system 

Langevin Dynamics requires the calculation of a random force vector at every 

step. This is implemented for the current model in the MATLAB function 

dynlang1.m. The best value of the collision parameter γ is an open question. In 

the original work35, the choice was 5/ps. For this model, we present results using 

a smaller collision parameter 2/ps. This corresponds to 0.1 in the units presented 

here. Power spectrum analysis shows that Langevin dynamics simulations on a 

given model exhibit essentially the same frequencies as constant-energy 

simulations do, but with broadening of the frequency peaks. This spreading of the 

peaks is in direct correlation with the magnitude of γ  with larger values resulting 

in broader peaks. This effect can be seen in figure 5. We note that this is 

especially the case for the low frequency motion, where the stochastic forces can 

excite rotations in the dipole about the fixed atoms. This broadening can be 

viewed in two lights, depending on the nature and aims of the simulation. If 

detailed time-dependent dynamical information about the very low frequency 

motion is needed, the stochastic forces in Langevin dynamics blur the picture 

somewhat. On the other hand this can result in enhanced sampling of the low 

frequency motion, allowing simulations to capture this important motion on a 

shorter simulation time scale.  

As we pointed out earlier, energy of the bonded terms is an especially sensitive 

detector of instability due to MTS resonance artifacts. Because total energy is not 

constant in Langevin simulations, bond energy can be used to monitor the 

stability of a Langevin trajectory. Figure 6 shows that the energy behavior of the 
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Langevin-stabilized extrapolation method is largely independent of τ, allowing for 

large MTS steps while maintaining the underlying behavior of the single-step 

Langevin method [6].  

 

 

EXTENDING THE TIMESCALE: PATH METHODOLOGIES 

In computational chemistry, molecular dynamics (MD) is the most widely used 

methodology to study the kinetic and thermodynamic properties of atomic and 

molecular systems56-58. These properties are obtained by solving the microscopic 

equations of motion [1] for the system under consideration. The multiple time 

steps algorithms discussed in the previous section increase the time scale that 

can be reached but the gain is still not enough for many processes. For many 

systems, like biomolecules, this simulation time is not enough to study large 

conformational changes or to study rare but important events.  

Due to this limitation of traditional and multiple time step MD algorithms, a 

different approach can be considered. This different set of methodologies attempt 

to compute trajectories connecting conformations from the reactant state to 

conformations of the product state, i.e., the reaction path. Transition path 

sampling, MaxFlux, discrete path sampling, string methods and optimization of 

actions are examples of methodologies searching for these transition paths. In 

this section, we will review briefly the first four methods. Then, the theory and 

implementation of the action formalism will be described with more detail. 
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Transition path sampling 

Transition path sampling (TPS) is a methodology that can be used to study slow 

activated processes. This technique, first developed by the Chandler group59, 60 

and further improved by Bolhuis et al.61-64, is based on a polymer-like 

representation of the complete trajectory. TPS is an iterative method that starts 

by computing a dynamical pathway connecting conformations of the reactant and 

product state. This can be done using simpler methods that generate 

approximate trajectories connecting two boundary points.  

Starting from this initial path, further trajectories are generated using an iterative 

strategy. Specifically, from the previous trajectory a configuration snapshot is 

taken and modified (Monte Carlo shooting method) in a manner consistent with 

the corresponding distribution ensemble. Usually the incorporated change is a 

momentum variation. Then, starting from this modified configuration, forward and 

backward trajectories are generated using MD. If this pathway connects the 

reactant and product state, this reactive trajectory is chosen to generate new 

ones. Iterating this process many times, an accurate sampling of trajectory space 

can be generated. From these trajectories, reaction mechanisms and transition 

states can be elucidated, and rate constants can be determined using the time 

derivative of the time correlation function61, 65: 
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in which ( )xAh and ( )xBh  are indicator functions that states if the system is the 

phase space regions A or B: 
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Here x is a phase space vector, ( ) ( )tBTtB hTH x<<= 0max , and 
( )THA B,

�  is an 

average over the ensembles of paths that start in A and go to B at least once 

during a fixed length T. An order parameter is introduced to describe the 

transition, and umbrella sampling can be used to compute the rate in Eq. [15].  

The molecular processes studied with TPS are typically associated with a 

transition over a single significant barrier. TPS is more efficient than standard MD 

because the reactive trajectories (computed by TPS) are much shorter than the 

time it takes between successive transitions. Therefore, more (reactive) 

trajectories are computed with TPS than normal MD.  

The methodology has been successfully applied to many systems, such as 

chemical reactions and conformational changes62, 66-71. However application of 

this algorithm to complex systems with rugged energy surfaces requires the 

identification of basin states separated by several barriers with different heights. 

For these systems, the assumption of time scale separation between the 

transition time and the incubation time is not easy to justify. For complex 

systems, the reactive trajectories can be long and the sampling will be limited by 

the time step used in the simulation. The definition of the reaction coordinate or 
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physical descriptor that allows the identification of the different basin and 

transition states present during transitions of complex molecules can be 

cumbersome72.  

Maximization of the diffusive flux 

This method (MaxFlux) is a time-independent algorithm that finds the path that 

maximizes the diffusive flux (or minimizes the mean first passage time) between 

two configurations at a given temperature. The algorithm is based on the work of 

Berkowitz and co-workers who derived the optimal transition connecting reactant 

and product using a variational principle73. If the transition is described as a 

stochastic process, the flux of particles along the optimal path is given by 

( )∫
∝

dlV

t
j

βγ exp

tan
  ,         [17] 

where V is the potential of mean force of the system, γ an isotropic and spatially 

independent friction coefficient, TkB1=β and dl is an infinitesimal length element 

along the path. In MaxFlux, the line integral in the denominator of Equation [17] is 

minimized using a self-penalty walk method74. 

MaxFlux has been applied by the group of John Straub to study conformational 

transitions in peptides and aggregate formation75, 76. This approach can be used 

to describe slow processes controlled by diffusion. A difficulty in this description 

is the necessity to specify the phenomenological friction constant. The value of 

the friction constant strongly influences calculations of rates and affect the 

transition pathways. The maximization of equation [17] uses global optimization 
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algorithms that are time-consuming and dependent on the initial guess for the 

pathway.  

A temperature-dependent nudged-elastic-band (NEB) algorithm based also on 

the maximization of the flux was recently proposed77, 78. In this MaxFlux-NEB 

algorithm, based on the differential form of Equation [17], a discretized path is 

constructed with the different neighboring structures maintained equally spaced 

by the use of spring forces. Then, the path is minimized using a modified Verlet 

algorithm. This methodology has similar limitations as the MaxFlux approach. 

Discrete path sampling and string method 

Discrete path sampling (DPS)79-82 is a methodology that samples paths along the 

potential energy surface (instead of the Gibbs free energy as in TPS). In this 

method, fast paths connecting local minima and transition state conformations 

are computed. The initial path connecting minima and transition states is 

computed using the nudged elastic band (NEB) method83, 84 and the number of 

paths is increased by replacing a minimum in the path with a new minimum close 

to the original path. The new path is accepted and used to generate new paths if 

it is faster than the original path. The rate constants are computed using a 

harmonic approximation to the local density of states for each stationary point of 

the potential energy surface.  Overall phenomenological rate constants can be 

extracted using master equations, kinetic Monte Carlo or graph transformations 

and transition state theory. The algorithm has been applied to a small 

pentapeptide79 and the GB1 hairpin80. Reliance on statistical rate theory is one of 
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the drawbacks of this methodology. A satisfactory sampling of stationary points 

of the potential energy for more complex systems can be difficult as well. 

In the string method85-89, based on the transition path theory (TPT)90, 91, a 

transition tube in configuration space is constructed by performing a sampling of 

the equilibrium distribution of the system in a collection of hyperplanes. These 

hyperplanes are parameterized by a string connecting two metastable states. 

The hyperplanes approximate the isocommittor surfaces (trajectories initiated at 

configurations on this surface have the same probability to reach the product 

state before reaching the reactant state). The transition tube represents a region 

in configuration space in which the transition occurs with high probability. The 

string is a curve normal to each hyperplane passing through the center of mass 

on each plane, and it defines the center of the transition tube. It is defined as 

( )
α

αϕ
P

x= ,          [18] 

in which the average is restricted to equilibrium configurations on the hyperplane 

αP  (α is a parameter characterizing the hyperplanes).  

The algorithm uses a variational principle to compute this string that satisfies87: 

( ) ( )αϕα 'n  || ˆ     ,         [19] 

where ( )αn̂  is a unit vector normal to the hyperplane αP  and ( )αϕ'  is the tangent 

vector of the string at α . 

The string method is a more sophisticated procedure compared to MaxFlux and 

DPS but due to its inherent complexity has been used only for very simple 

systems such as alanine dipeptide87.   
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Optimization of action 

Another set of algorithms have been developed in the past few years in the group 

of Ron Elber based on the optimization of actions92, 93. In these methods an initial 

guess for the trajectory is generated connecting two boundary states, and the 

least action formalism is used to compute a finite-temperature trajectory.    

The first formulation of this methodology was based on a discretized version of 

the classical action: 
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generating the Onsager-Machlup object function94-98: 
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In these equations, X is the coordinate vector for the system, M  is the diagonal 

mass matrix, V  the potential energy, X0 and XN are the fixed boundary 

conformations in the trajectory and iε  is an error variable. This algorithm, called 

stochastic difference equation in time (SDET), has been used to compute 

approximate trajectories using a large time step ∆t for long time events. These 

paths are obtained by sampling trajectory space using molecular dynamics or 

Monte Carlo according to a Gaussian distribution of errors (the term between 

parentheses corresponds to a finite difference version of the Newton’s equation 

of motion [2]). Using similar time formalisms, Passerone and Parrinello99, 100 and 

Bai and Elber101 have computed exact trajectories for relatively short but rare 

processes.  
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In this section a variant of the SDET algorithm will be described with more detail. 

In this more recent formulation called SDEL (for stochastic difference equation in 

length) the trajectory is parameterized as a function of its arc length and a unique 

path is obtained connecting the two boundary conformations92, 93. In this sense, 

the SDEL algorithm is similar to DPS and string methods because trajectories 

are computed in configuration space instead of the space parameterized by time 

like in normal MD, TPS and SDET algorithms.  

Boundary value formulation in length 

The SDEL algorithm allows the computation of atomically detailed trajectories 

connecting two known conformations of the molecule over long time scales. In 

contrast to normal and MTS molecular dynamics algorithms, step sizes can be 

easily increased two or three orders of magnitude without significative changes in 

many properties of the trajectory. The trade-off is that trajectories obtained with 

such a large step size are approximate: molecular motions that occur on a scale 

shorter than the step size are filtered out from the trajectories. Also, the initial and 

final configurations must be known because this is a boundary value algorithm. 

This means that the algorithm can not be used to predict the final conformation of 

a molecular system such as a protein. This confines the applicability of the 

algorithm to situations in which the initial and final configurations are known by 

experiment or modeling. This is not an unbearable limitation. In many chemical 

events, we are interested to determine how a system changes from a reactant 

state to a product state. For example, the algorithm can be used to describe 
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folding mechanisms102: how a protein folds to its native conformation starting 

from an unfolded structure.  

The Onsager-Machlup action methodology has a significative disadvantage: the 

total time of the trajectory is needed in advance. Also, low resolution trajectories 

do not approach a physical limit when the step size increases, in contrast to 

SDEL as will be shown below.   

Similarly to the Onsager-Machlup action method, the SDEL algorithm is based on 

the classical action. However, in this case the starting point is the action S 

parameterized according to the length of the trajectory103:  

( )( )∫ −=
f

u

dlVES

Y

Y

Y2                                                 [20] 

where Yu and Yf (lower and upper limits of integration) are the mass weighted 

coordinates ( XMY = ) of the initial and final conformation of the system, 

respectively, E is the total energy and V is the potential energy of the system, 

and dl is an infinitesimal mass-weighted arc length element for the path 

connecting Yu and Yf . Using the least-action principle of classical mechanics one 

obtains a classical trajectory connecting these two states of the system when a 

stationary solution for the action is computed, i.e., δS/δY = 0 (the action is not 

necessarily a minimum103, 104). These trajectories are calculated differently from 

usual MD simulations. First, the trajectory is obtained using double boundary 

conditions: the initial and final coordinates of the system are required as input. In 

contrast, in the MD algorithm the initial positions and velocities (usually chosen 

randomly from a Boltzmann distribution) are needed. Second, the trajectory in 
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Eq. [20] is parameterized as a function of length and not as a function of time. 

Finally, in the SDEL formulation the total energy of the trajectory is fixed. In 

contrast, in an MD trajectory the total time is fixed once the step size and the 

number of steps are constrained in the calculation. 

Computation of exact trajectories using Eq. [20] is more expensive than in normal 

MD because the evaluation and optimization of the action entails the knowledge 

of the entire trajectory. However, if the aim is to obtain an approximate trajectory 

with a large step size between successive structures, optimization of Eq. [20] is a 

more feasible task and generates a more stable trajectory than in a 

straightforward MD algorithm. Numerically, an approximate trajectory is 

computed from Eq. [20] when a large step size is used ∆l >> dl.  Specifically, 

after replacing ldl ∆→  a discrete version of the action in Eq. [20] is obtained: 
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where the action is now a function of the coordinates of the N intermediate 

structures in the path, { }N

ii 1=
Y (with the coordinates of the structures Y0 ≡ Yu and 

YN+1 ≡ Yf held fixed), and ∆li,i+1 is the mass-weighted distance separating 

consecutive structures in the trajectory (∆li,i+1 = |Yi – Yi+1|). The trajectory that 

makes S stationary is determined by optimization. Thus, the optimized trajectory 

represents a sequence of structures connecting the initial and final state of the 

system. Explicitly, after optimization the following expression is obtained103: 
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where iê  is a unit vector tangential to the path at slice i, and the length step ∆l 

can be made a constant in the calculation and therefore independent of the index 

i. The first term of Eq. [22] (equivalent to the acceleration term in the Newton’s 

equation of motion [1]) depends on the step size. At larger step sizes, this 

“acceleration” contribution becomes smaller. In the limit when this inertial term 

can be neglected, Eq. [22] becomes: 
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Equation [23] generates a path in which the force is minimized in all directions 

but the tangential direction of the path. This is one of the definitions of the 

minimum energy path (MEP)105. This equation suggests that SDEL provides a 

physically meaningful trajectory even at low resolution (large step sizes). 

To obtain an approximate trajectory using SDEL the following steps are used 

(Figure 7):  

1. An initial guess for the path connecting the initial and final coordinates of 

the system is generated using a MEP algorithm, for example by self-penalty work 

(SPW)74 or NEB83, 84.  

2. The total energy of the system E (needed to evaluate and optimize the 

action) can be estimated by averaging the total energy obtained using several 

MD simulations of the system at the temperature of interest. An alternative 

method is to identify the highest and lowest values of the potential energy for the 
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MEP trajectory, and then compute the average thermal energy at the top of the 

barrier (i.e., ( )( ) TkLVVE Blowhigh 263 −+−= , where L is the number of atoms in the 

system).  

3. A stationary solution for the action S, for which 0=∂∂ iS Y , is obtained by 

minimizing the square of the action gradient ( )∑ ∂∂=Θ
2

iS Y using a simulated 

annealing protocol (Figure 7). The evaluation of the potential energy, forces and 

hessians needed by the optimization algorithm is performed using the 

Amber/OPLS force field parameters including in the molecular simulation 

package MOIL106.  

4. Finally, the optimized trajectory is examined and its accuracy is estimated 

by the step size ∆l. This step size should be small enough to provide a smooth 

representation of the path. The cut-off value ∆lc depends on the particularities of 

the system. If ∆l > ∆lc , the trajectory is not accepted and more intermediate 

structures are added to the path. Then, steps 3 and 4 are repeated.  

The function ( )∑ ∂∂=Θ
2

iS Y  depends on the distances 1, +∆ iil  (Eq. [22]) which 

are computed as norms in Cartesian space. Therefore, it is important to remove 

overall translations and rotations from the structures along the trajectory. This 

can be done by imposing linear constraints using the Eckart conditions107: 

( )∑ ∑
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where the vector kly  is the mass-weighted Cartesian coordinate of atom l in 

structure k. The vectors 0

ijy  represent the coordinates of a reference structure. 
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Equation [24] provides 6N linear constraints. We can denote these constraints by 

imσ  with i = 1, …, N and m = 1, …, 6.  

The gradients of the constraints ilσ∇  and unit vectors in their directions 

( )
ililil σσ ∇∇=0

η  are coordinate-independent. Therefore, they only need be 

computed once at the beginning of the calculation. These unit vectors are not 

necessarily orthogonal for a single structure ( lkikil δ≠⋅ 00
ηη ). They can be 

orthogonalized using a Gram-Schmidt procedure108. We can denote this set of 

orthogonalized vectors by { }N

iil 1=
η . 

Let { }N

ii 1=
Y  denote the set of variable coordinates of the current trajectory that 

satisfies the constraints. Let { }N

ii 1

0

=
Yδ  be a proposed displacement of these 

coordinates during the optimization process to generate a new trajectory 

{ }N

iii 1

0

=
+ YY δ . The components of the displacement that satisfies the constraints 

are given by: 
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= …l
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Then, a new trajectory with coordinates { }N

iii 1=
+ YY δ  satisfies the Eckart 

constraints. 

The SDEL algorithm has been efficiently parallelized using message passing 

interface (MPI) libraries. In the parallelization scheme each node of a cluster of 

computers calculates the potential energy and derivatives for a particular 

segment of the path109. Inter-node communication is not heavy and the 

computation scales favorably with cluster size.  
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There are several advantages of SDEL compared with other methods:  

1) The trajectories can be computed at room temperature or any other 

temperature of interest and no bias potential is needed. This differs from 

methods that use high temperature to accelerate the dynamics110, or modify the 

potential energy function to drive the trajectory to a desired outcome110-112. 

2) Both the boundary conditions and the length parameterization enable 

study of very slow processes. This is demonstrated later. 

3) The algorithm is easy to run in parallel with no costly communication 

between processors. Ordinary PC clusters can be used. 

4) As in any reaction path method all the trajectories are reactive. This 

enhances the efficient use of computational resources. This is in contrast to initial 

value normal and MTS MD, in which many trajectories do not end at the desired 

state. 

5) The SDEL formulation is very general. It is not limited to processes with 

large energy barriers, single barriers or with exponential kinetics. This makes 

SDEL more versatile than other reaction paths methods.  

6) The algorithm produces an interpolation between the minimum energy 

path (MEP) and a true classical trajectory. Hence, even trajectories with low-

resolution can be useful in qualitative reaction path studies. 

But the algorithm has several disadvantages: 

1) The trajectories are approximate. High frequency motions are not 

resolved. These motions can be important in certain dynamical events.  
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2) The computations are expensive. Computations of trajectories for systems 

with ~1000 atoms require a parallel resource of near 20 CPU-s at current 

processor speeds. However, cluster of computers of this size are becoming 

common in computational chemistry labs.  

3) The length formulation makes it difficult to estimate the timescale of the 

process. Because of this limitation SDEL can provide information about the 

relative sequence of events but not absolute times. This is a limitation shared by 

all reaction path methods. 

4) Thermodynamic properties are approximate and quantitative kinetic 

properties are inaccessible. The filtering out of high frequency modes due to the 

large step size affects calculations of thermodynamic properties and transition 

probabilities. However, it has been shown that enthalpic properties of slow 

variables are affected only slightly93. 

5) The final solution depends on the initial guess for the trajectory. For a 

large system, no global optimization protocol will generate the true minimum for 

the target function Θ  in an acceptable time. In the applications of SDEL, the 

initial guess is an approximate MEP obtained with a self-penalty walk algorithm 

and most of the solutions obtained correspond to trajectories in local minimums 

near this initial guess. Implementation of more unbiased procedures, sampling 

trajectories connecting structures in configuration space, is a subject of ongoing 

research113.  

6)  The current implementation of the algorithm uses implicit solvent model. 

This is not an essential limitation of SDEL and computations of trajectories with 
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an atomistic description of the aqueous environment are possible. An assumption 

of time separation between the relaxation of the water molecules to equilibrium 

and the solvated molecule (for example, a protein) can make the calculations 

feasible. Then the configuration for the water molecules can be determined using 

thermal distribution for a fixed configuration of the molecule. A short MD 

simulation can be used to this end. This procedure was used before to include 

explicit water dynamics in the Onsager-Machlup action96, 109. However, inclusion 

of explicit solvent using this adiabatic approximation makes the computations 

slower for large systems. A simpler way to include the effect of explicit 

water/molecule interactions entails the extraction of configuration snapshots from 

SDEL trajectories. Then, these structures can be immersed into a box with 

explicit water molecules and MD simulations can be performed until equilibration 

is reached114.  

It is clear that the SDEL algorithm has very appealing advantages when it is 

applied to long time events. Meaningful trajectories can be obtained for 

processes that are difficult or impractical to study by initial-value formulations and 

other reaction path techniques. However, the lack of kinetic information makes 

SDEL an alternative to other algorithms that can provide transition probabilities, 

albeit with limited time scale, like TPS, DPS and string methods.  

Use of SDEL to compute reactive trajectories: input parameters, initial 

guess, paralelization protocol 

The SDEL algorithm is implemented in MOIL, a suite of molecular simulation 

programs developed in the group of Ron Elber. Linux and windows versions of 
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the software package can be downloaded, free of charge from his group website 

at http://cbsu.tc.cornell.edu/software/moil/moil.html. The windows version has a graphics 

interface that is relatively easy to use. The linux version can only be run in a 

command mode after installation using a makefile command. The SDEL program 

can be run on a standalone computer or on a parallel cluster of PC’s using MPI 

protocols. As it was mentioned before, the optimization of the action is 

computationally expensive. Therefore the use of a parallel computer is 

recommended for most applications dealing with systems with more than ~100 

atoms. The inter-node communication required is low and the computation scales 

well with an increase of the number of nodes109. 

To compute a trajectory with SDEL, the two conformations at the boundaries are 

required. For example, to study the mechanism of folding of a protein, the initial 

unfolded conformation in the trajectory can be extracted from high temperature 

molecular dynamics simulations of the protein under consideration. The final 

folded structure in the trajectory can be taken from the protein data bank after 

equilibrium MD of the native configuration.  

The total energy of the molecular system is also required by SDEL. The most 

common way to estimate this energy is by performing room temperature MD of 

the system, with the same solvation model and force-field parameters to be used 

during the SDEL run.  

An initial guess for the trajectory connecting the two boundary states needs to be 

generated to evaluate the SDEL action, Θ . This is the most troublesome step of 

the algorithm. The SDEL action depends on ( )( )XVE −2 . This suggests that 
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each conformation in the initial trajectory must have a potential energy smaller 

than the total energy of the system. This prevents the use of simple methods to 

compute the initial trajectory like linear interpolation of the two boundary 

structures.  In general, linear interpolation will generate intermediate structures 

with large potential energy due to steric repulsions. 

In practice, this problem is solved by computing an approximate MEP connecting 

the two boundary states and using this path as initial guess for SDEL. MOIL 

contains a program called chmin that computes MEP using a simple self-penalty 

walk algorithm74. Chmin treats the path as a polymer chain, where each 

monomer is a copy of the molecular system at different times. The potential 

energy of the chain is the sum of the potential energies of each monomer, with 

the addition of a harmonic attraction term between nearest neighbors, and an 

exponential repulsion term between next nearest neighbors.  

The potential energy for the structures V(Yi) in the MEP should be analyzed 

before using this trajectory as initial guess for SDEL. Not only must the potential 

energy of every slice be lower than the total energy of the system but the 

potential energy should vary smoothly in the trajectory. It has been observed that 

steep peaks or decays of V(Yi) cause numerical instability during the optimization 

of the action. 

The input file for SDEL, called path.inp in MOIL (Table 1), contains the names for 

the file (rcrd) with the initial guess trajectory (this is a binary file with extension 

pth), and the connectivity file used to extract the potential parameters for the 
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molecule. The connectivity file (with extension wcon) is generated by running the 

program conn in Moil.  

The SDEL target function for optimization in Moil is: 

( ) ( )∑∑
=

+ ∆−∆+∂∂=Θ
N

i

iii llS
0

2

1,

2
γY        [26] 

with l∆  the average value of the distances 1, +∆ iil between structures in the path. 

The second term on the right side enforces equidistance of structures in the path. 

The parameter γ  is a constant that can be adjusted in the input file (gama in 

path.inp) to optimize calculation efficiency. 

A simulated annealing protocol can be used to optimize the target function 

subjected to the overall translation and rotation constraints (Equation [24]). We 

can denote the variable components of the initial guess for the trajectory { }N

ii 1

0

=
Y  

and optimize the trajectory for K steps solving the second-order differential 

equation for the trajectory { }N
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Using linear cooling with velocity scaling ( )τθµτ −=
2

ddZ , where τ is a 

fictitious time during the annealing run, θ  is the total time (in practice, τθ ∆= K ) 

and µ  is a factor proportional to the initial temperature used at the beginning of  

an annealing cycle. In the input file, the flag anne instructs the program to use 

simulated annealing, tmpr gives the value of µ , and dtop is the time step τ∆ .  

The SDEL program can also use a conjugate gradient Powell algorithm115 to 

minimize the target function. This algorithm is more efficient searching for local 
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minima. Therefore, it should be used only if it is believed that the initial guess for 

the trajectory is near the global minimum. To use conjugate gradient the anne 

flag must be removed in path.inp. 

Other parameters that control the performance of a SDEL run (Table 1) are: 

#ste = provides the total number of optimization steps.  

list = gives the total number of steps in each cycle of optimization (the value of 

K). The program also writes useful information every list steps. 

grid = this is the total number of structures in the trajectory, i.e., grid = N+2. 

pdqe = provides the total energy for the molecular system in Kcal/mol. 

gbsa = uses a generalized Born model for the solvent environment. 

rmax, epsi, v14f, el14 are the values for the cutoff distance for nonbonded 

interactions, dielectric constant and 1-4 scaling for van der Waals and 

electrostatics interactions respectively. 

proc = the number of nodes use 

cpth = the program reads the trajectory coordinates (rcrd) using a binary path 

format. 

action = instructs the program to continue execution.  

During execution, the program generates log files with information about the 

status of the run on each node. The log file associated with the master node 

(called pth_out_0000.log) gives the gradient of Θ  every list steps. Typically a 

value of this gradient of 10 (Kcal/mol)2 or less produces a convergent trajectory. 

Convergence can be analyzed by comparing intermediate results for the paths 

which are written after each cycle of optimization.  
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At the end of a run, the final trajectory is output (file wcrd) with path format. Moil 

contains several programs that can be used to analyze the trajectory 

(computation of radius of gyration, native contacts, secondary structure content, 

etc). The windows graphics interface of Moil can be used to visualize the 

trajectory. Also, the path format can be converted to a more conventional format 

like dcd using the ccrd program of Moil. Dcd files can be open by many molecular 

visualization programs like VMD116. 

The most common error message during a SDEL run is “Our momentum is < 0”. 

This occurs any time the potential energy is larger than the total energy during 

the optimization process. Changes of the annealing parameters or the value of γ  

often fix this problem.  

Examples of SDEL runs can be found in the directory moil.test in Moil. 

Applications of the stochastic difference equation in length 

The SDEL algorithm has been used to study the folding dynamics of several 

peptides and protein systems. In these applications the solvent environment has 

been treated implicitly using the Generalized Born model117, 118. The algorithm 

was first applied to study the folding of the B domain fragment of the 

Staphylococcal protein A92. This 60-residue three-helical protein has been 

studied by many groups using different computational strategies102. A recent 

experimental assessment of the transition state for this folding process suggests 

the difficulties of atomic simulations in capturing all the features observed in the 

experiment119. The results from SDEL were similar to the results obtained using 

high-temperature MD simulations showing early formation of the most stable 
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helix. The experiment indicates that the other two helices are more involved in 

the early folding. This points to the existence of some energetic frustration during 

the folding of this protein120.  

SDEL was also used to study the coil-helix transition of an alanine-rich peptide93, 

the conformational transition of sugar puckering in deoxyadenosine121, 

polymerase P122, and the B-Z DNA transition123. The coil to helix study93 

demonstrated several properties of SDEL trajectories, like the filtering of high 

frequency modes and the preservation of thermodynamics properties for slow 

degrees of freedom when the trajectory resolution is decreased.  

An interesting application of SDEL examined the folding mechanism of 

cytochrome c124. The folding kinetics of cytochrome c has been extensively 

studied experimentally by a variety of techniques125-129. The analysis of SDEL 

folding trajectories was in agreement with several experimental observations: the 

collapse of the protein without formation of secondary structures followed by 

formation of the terminal helices before the middle helix (see upper side of Figure 

8). Then a molten globule conformation is formed. The structural features of this 

molten globule conformation (lower right side of Figure 8) are in agreement with 

fluorescence energy transfer experiments130. Finally, more rearrangements occur 

before the protein folds to its native conformation (lower left side Figure 8). 

The SDEL algorithm has also been applied to study the folding of more 

complicated systems, such as the wild type human Cu, Zn superoxide dismutase 

(SOD) dimer.  SOD is a 153-residue, homodimeric, anti-oxidant enzyme that 

dismutates superoxide ion to hydrogen peroxide and oxygen131.  It is an eight-
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strand, flattened, beta-barrel protein with one copper and one zinc ion per 

monomer132.  This protein is involved in the Familial form of Amyotrophic Lateral 

Sclerosis (FALS).   

A 1.8Å resolution Apo-SOD crystal structure (PDB 1HL4133) was used to 

generate SDEL trajectories113 of monomer folding and dimerization (Figure 9).  

Initial analysis of a pair of trajectories showed a small population of folded but 

separated monomers. Interestingly, approximately 15-20% of each monomer's 

intra-subunit native contacts form when the subunit centers-of-mass are within a 

few angstroms of equilibrium position, with the rest of the native contacts forming 

when the monomers are farther away.   

Recent advances and challenges 

These applications demonstrate the potential of the SDEL algorithm as a tool to 

study conformational dynamics of large molecular systems such as peptides and 

proteins at longer timescales. This is the only algorithm from the methods 

discussed in this chapter that can be used to compute trajectories for such 

complex processes that take milliseconds or longer, such as the folding of 

cytochrome c or the SOD dimer. Although the trajectories are approximate they 

can provide structural data to explain experimental observations. If a more 

detailed and accurate description is required, snapshots taken from these SDEL 

trajectories can be used to extract thermodynamic information using MD, 

umbrella sampling or replica exchange methodologies. 

The major limitation of the SDEL algorithm is the inaccessibility of absolute times 

and computation of rates. A promising algorithm called Milestoning has been 
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proposed recently to overcome this difficulty134. This method computes a non-

Markovian hopping between configuration space hyperplanes, the so-called 

“milestones”. The assumption is that there is an equilibrium distribution on each 

milestone. The kinetics is obtained by starting an equilibrium configuration on a 

milestoning, and measuring the time distribution needed to reach the forward or 

backward milestones using short MD simulations. These time distributions are 

then used to compute the global kinetics through a non-Markovian model. The 

algorithm needs a reaction coordinate to define the hyperplanes. This reaction 

coordinate can be a MEP or a SDEL trajectory. The equilibrium sampling is 

performed in the neighborhood of the curvilinear path describing the reaction 

coordinate. This approach can also be used to compute free energy profiles 

along the reaction coordinate135, 136. The Milestoning method depends on the 

assumption that there is only one reaction coordinate (slow variable) in the 

system. The correctness of the approach can be assessed by monitoring the rate 

as a function of the separation between the milestones.  

A similar algorithm is partial path transition interface sampling (PPTIS)137. This 

method is based on transition interface sampling (TIS)61, 67, which maps the 

phase space of the system with many interfaces characterized by a one-

dimensional reaction coordinate. In PPTIS rates are computed using a Markovian 

state model, i.e., assuming a loss of correlation during interface hopping. This 

algorithm is aimed at computing the kinetics of two-state exponential process in 

equilibrium. 
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Use of Milestoning or PPTIS could provide a way to recover the information that 

is lost when the high-frequency motions of the molecular system are filtered out 

by a SDEL trajectory. Hence, correct kinetic and thermodynamic properties can 

be extracted from the simulations. For very long and diffusive processes, like the 

ones associated with the folding of large proteins, computation of these 

properties still be challenging because the transitions between hyperplanes or 

interfaces will require longer MD simulations. At that point, a combination of MTS 

with these path methods could improve efficiency and speed. 

 

 

CONCLUSION 

Computational methods to extend the timescale of atomically detailed 

simulations have improved in the last 15 years. Accurate MTS simulations, with 

computational gains up to a factor of 10, have extended the applicability of 

molecular dynamics simulations. Additional refinements in the computation of 

medium-range forces could provide stable results with increasing speedups. 

However, it is apparent that fundamental limitations will prevent the extension of 

these algorithms to the range of timescales that are needed to study many 

processes of interest. On the other hand, reaction path approaches can be used 

to investigate slower processes by using different simplifying assumptions and 

approximations (for example, two-state transitions, equilibrium distributions along 

the path or removal of high-frequency motions). Therefore, path methodologies 

extend the range of application of computer simulation but with lost of accuracy 
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and dynamical information compared with normal and MTS molecular dynamics 

simulations. At the end, some path techniques utilize MD to compute rate 

constants and recover part of the dynamical properties filtered out. In the future, 

use of MTS should improve the efficiency and practicality of these calculations.  
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Figures and table captions 

Figure 1: The planar two-water model system. 

Figure 2: The model exhibits motion across a wide range of frequencies. The left 

view shows a short trajectory of one component of the model system showing the 

period of the fastest motion to be approximately 8.8 fs. The right view shows the 

trajectory of one dipole angle. Note that there is a low frequency motion with 

period approximately 10 ps. 

Figure 3: Power spectrum analysis for the dipole angle of one molecule. In the 

right view, frequency peaks can be seen corresponding to several fast motions, 

including the fastest of period 1/(0.114/fs)= 8.8 fs. The left view shows an 

enlarged region at the low-frequency end of the scale. The slow motion due to 

long-range electrostatics can be observed with period 1/(0.0001/fs) = 10000 fs. 

Figure 4: Sensitivity of impulse MTS method to slow force update interval. The 

energy error is essentially unchanged from Velocity Verlet at update interval up 

to 4 fs. For larger update intervals, energy error is erratic, with a notable jump at 

the period of the fastest motion. 

Figure 5: Power spectrum analysis of Langevin dynamics simulation of the model 

system. Frequency peaks are seen to be in qualitative agreement with constant-

energy simulations, but somewhat broadened. 

Figure 6: Average bond energy versus slow force update interval for Langevin-

stabilized extrapolation MTS method. These average energies, taken from long 

simulations, show no sensitivity to slow force update interval. 
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Figure 7: Simplified view of the optimization of a trajectory. The circles denote 

configuration snapshots taken along the initial guess for the trajectory (dotted 

line). The first and last circles are the fixed boundaries of the path. The solid line 

is the resulting trajectory after optimization of the target function Θ . The arrows 

indicate the direction of the gradient of the target function for that particular 

coordinate slice. 

Figure 8: Ribbon view of cytochrome c at four different positions along one of the 

folding trajectories. 

Figure 9: Snapshots of SOD Trajectory. The arrow indicates the direction of 

folding. The top structure is the initial unfolded conformation.  The second 

structure is an intermediate structure in the trajectory with partial secondary 

structure formation.  The bottom structure is the folded dimer. The monomer size 

and separation are not shown to scale to enhance clarity. The center of mass 

distances in the first two snapshots116 are 280Å and 50Å greater than the 

equilibrium dimer distance, respectively. The disulfide bridge between Cys57 and 

Cys146 was conserved during the simulations. 

 

 

Table 1: Example of input file (path.inp) for SDEL run. 
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Fig. 6 
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file conn name=(val.wcon) unit=10 read 

file rcrd name=(valmin200.pth) bina unit=14 read 

file wcrd name=(valpath.PTH) bina unit=12 wovr 

#ste=5000 list=500 

gama=2000.0 grid=200 pdqe=-42.2 gbsa 

rmax=9999. epsi=1. v14f=8. el14=2. cpth  

proc=10 

tmpr=30000.0 

dtop=1.0d-4 

anne 

action 
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